RESUMO
Chemical investigation of the psychrophilic fungus Pseudogymnoascus sp. HDN17-933 derived from Antarctica led to the discovery of six new tetrapeptides psegymamides A-F (1-6), whose planar structures were elucidated by extensive NMR and MS spectrometric analyses. Structurally, psegymamides D-F (4-6) possess unique backbones bearing a tetrahydropyridoindoles unit, which make them the first examples discovered in naturally occurring peptides. The absolute configurations of structures were unambiguously determined using solid-phase total synthesis assisted by Marfey's method, and all compounds were evaluated for their inhibition of human (h) nicotinic acetylcholine receptor subtypes. Compound 2 showed significant inhibitory activity. A preliminary structure-activity relationship investigation revealed that the tryptophan residue and the C-terminal with methoxy group were important to the inhibitory activity. Further, the high binding affinity of compound 2 to hα4ß2 was explained by molecular docking studies.
Assuntos
Ascomicetos , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Simulação de Acoplamento Molecular , Triptofano , Regiões Antárticas , Ascomicetos/químicaRESUMO
In our previous study, tetrahydropyridoindoles carboxymethylated in position 8 were identified as aldose reductase (ALR2) inhibitors with mild efficacy and selectivity yet with significant antioxidant activity. In the present study we proceeded with optimization of the tetrahydropyridoindole scaffold by shifting the carboxymethyl pharmacophore from position 8 to position 5, with the aim to improve the biological activity. Commercial databases were screened for the presence of tetrahydropyridoindoles carboxymethylated in position 5 and an experimental set of eight compounds was created. Mild inhibition characterized by IC50 in micromolar range was recorded for compound 8 with the isopropyl substituent at the piperidine nitrogen (position 2). This alkylated tertiary nitrogen is characterized by a rather high basicity (pKaâ¯â¼â¯10.4) with complete protonization at physiological pH. On the other hand, ALR2 inhibition activity of the low basicity derivatives 3-7 with an acyl substituted nitrogen in position 2 (pKaâ¯â¼â¯-1 to -3) was characterized with IC50 values in low and medium nanomolar region. Docking into the binding site of human recombinant enzyme AKR1B1 performed for 3 revealed an interaction network responsible for the high affinity and selectivity. In ex vivo experiment, sorbitol accumulation in isolated rat eye lenses was significantly inhibited by 3 in the presence of high glucose, starting at a concentration as low as 0.1⯵M. Moreover, in streptozotocin-induced diabetic rats, compound 3 administered intragastrically (i.g., 50â¯mg/kg/day) for five consecutive days significantly inhibited sorbitol accumulation in red blood cells and the sciatic nerve. Molecular obesity indices predicted along with water solubility point an excellent "lead-likeness" of compound 3, with prospects of further structure optimizations.
Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Aldeído Redutase/metabolismo , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Indóis/síntese química , Indóis/química , Masculino , Estrutura Molecular , Teoria Quântica , Ratos , Ratos Wistar , Relação Estrutura-AtividadeRESUMO
Sirtuins are protein deacylases with regulatory roles in metabolism and stress response. Functionalized tetrahydro-1H-pyrido[4,3-b]indoles were identified as preferential sirtuin 2 inhibitors, with in vitro inhibitory potencies in the low micromolar concentrations (IC50 3-4 µM) for the more promising candidates. The functional relevance of sirtuin inhibition was corroborated in western blots that showed hyperacetylation of p53 and α-tubulin in treated HepG2 and MDA-MB-231 cells. Molecular docking showed that the tetrahydropyridoindole scaffold was positioned in the NAD + pocket and the acetylated substrate channel of the sirtuin 2 protein by van der Waals/hydrophobic, H bonding and stacking interactions. Functionalized tetrahydropyridoindoles represent a novel class of sirtuin 2 inhibitors that could be further explored for its therapeutic potential.