Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Environ Sci Technol ; 58(29): 13047-13055, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38977269

RESUMO

Quantification of microplastics in soil is needed to understand their impact and fate in agricultural areas. Often, low sample volume and removal of organic matter (OM) limit representative quantification. We present a method which allows simultaneous quantification of microplastics in homogenized, large environmental samples (>1 g) and tested polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) (200-400 µm) overestimation by fresh and diagenetically altered OM in agricultural soils using a new combination of large-volume pyrolysis adsorption with thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS/MS). Characteristic MS/MS profiles for PE, PET, and PS were derived from plastic pyrolysis and allowed for a new mass separation of PET. Volume-defined standard particles (125 × 125 × 20 µm3) were developed with the respective weight (PE: 0.48 ± 0.12, PET: 0.50 ± 0.10, PS: 0.31 ± 0.08 µg), which can be spiked into solid samples. Diagenetically altered OM contained compounds that could be incorrectly identified as PE and suggest a mathematical correction to account for OM contribution. With a standard addition method, we quantified PS, PET, and PEcorrected in two agricultural soils. This provides a base to simultaneously quantify a variety of microplastics in many environmental matrices and agricultural soil.


Assuntos
Agricultura , Cromatografia Gasosa-Espectrometria de Massas , Plásticos , Polietileno , Pirólise , Poluentes do Solo , Solo , Polietileno/química , Solo/química , Poluentes do Solo/análise , Espectrometria de Massas em Tandem , Microplásticos/análise , Polietilenotereftalatos/química , Monitoramento Ambiental/métodos
2.
Environ Sci Technol ; 58(27): 11901-11911, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38920334

RESUMO

Health risks of microplastic exposure have drawn growing global concerns due to the widespread distribution of microplastics in the environment. However, more evidence is needed to understand the exposure characteristics of microplastics owing to the limitation of current spectrum technologies, especially the missing information on small-sized particles. In the present study, laser direct infrared spectroscopy and thermal desorption-gas chromatography-mass spectrometry combined pyrolysis using a tubular furnace (TD-GC/MS) were employed to comprehensively detect the presence of plastic particles down to 0.22 µm in human excreted samples. The results showed that polyethylene (PE), polyvinyl chloride, PE terephthalate (PET), and polypropylene dominated large-sized (>20 µm) and small-sized plastic plastics (0.22-20 µm) in feces and urine. Moreover, fragments accounted for 60.71 and 60.37% in feces and urine, respectively, representing the most pervasive shape in excretion. Surprisingly, the concentration of small-sized particles was significantly higher than that of large-sized microplastics, accounting for 56.54 and 50.07% in feces (345.58 µg/g) and urine (6.49 µg/mL). Significant positive correlations were observed between the level of plastic particles in feces and the use of plastic containers and the consumption of aquatic products (Spearman correlation analysis, p < 0.01), suggesting the potential sources for plastic particles in humans. Furthermore, it is estimated that feces was the primary excretory pathway, consisting of 94.0% of total excreted microplastics daily. This study provides novel evidence regarding small-sized plastic particles, which are predominant fractions in human excretion, increasing the knowledge of the potential hazards of omnipresent microplastics to human exposure.


Assuntos
Fezes , Microplásticos , Plásticos , Humanos , Fezes/química , Tamanho da Partícula , Cromatografia Gasosa-Espectrometria de Massas , Monitoramento Ambiental
3.
Anal Bioanal Chem ; 416(2): 407-417, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37968382

RESUMO

A polystyrene (PS) certified reference material (CRM) for the analysis of decabromodiphenyl ether (BDE 209) was issued. PS disk was prepared by injection molding of the mixture of versine PS and BDE 209. The certification of the PS CRM was conducted by two analytical methods with different sample preparation methods using isotope dilution mass spectrometry (IDMS). The certified value, wCRM, was 978 mg/kg, and this value coincided with the regulation value of BDE 209 in the Restriction of Hazardous Substances directive (1000 mg/kg). The uncertainties related to certification, uwmean, inhomogeneity, uhom, and long- and short-term instability, usts and ults, respectively, were evaluated based on the mass fraction of BDE 209. The uwmean, uhom, usts, and ults were 0.0265, 0.0046, 0.0061, and 0.0099 (relative), respectively, and the expanded uncertainty for this CRM was determined as 57 mg/kg (coverage factor is 2). Additionally, the quantitative capability of the thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was evaluated. In TD-GC/MS, the analytical values of the developed CRM obtained by the external and internal standard methods with matrix-free calibrants were out of the range of the wCRM (almost 10% larger or smaller), whereas those with matrix-matched calibrants agreed with the wCRM. In contrast to these results, the analytical values obtained by TD-GC/MS using IDMS were consistent with the wCRM no matter if matrix-free or matrix-matched calibrants were used. These results indicated that, for quantification of BDE 209 in PS, the trueness and precision of TD-GC/MS can be enhanced by applying IDMS without matrix-matched calibrants.

4.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928142

RESUMO

In this study, Fe3O4 nanoparticles (FeNPs) decorated with halogenated perylene diimides (PDIs) have been used for capturing VOCs (volatile organic compounds) through noncovalent binding. Concretely, we have used tetrachlorinated/brominated PDIs as well as a nonhalogenated PDI as a reference system. On the other hand, methanol, ethanol, propanol, and butanol were used as VOCs. Experimental studies along with theoretical calculations (the BP86-D3/def2-TZVPP level of theory) pointed to two possible and likely competitive binding modes (lone pair-π through the π-acidic surface of the PDI and a halogen bond via the σ-holes at the Cl/Br atoms). More in detail, thermal desorption (TD) experiments showed an increase in the VOC retention capacity upon increasing the length of the alkyl chain, suggesting a preference for the interaction with the PDI aromatic surface. In addition, the tetrachlorinated derivative showed larger VOC retention times compared to the tetrabrominated analog. These results were complemented by several state-of-the-art computational tools, such as the electrostatic surface potential analysis, the Quantum Theory of Atoms in Molecules (QTAIM), as well as the noncovalent interaction plot (NCIplot) visual index, which were helpful to rationalize the role of each interaction in the VOC···PDI recognition phenomena.


Assuntos
Álcoois , Álcoois/química , Perileno/química , Perileno/análogos & derivados , Compostos Orgânicos Voláteis/química , Halogênios/química , Nanopartículas de Magnetita/química , Teoria Quântica
5.
J Environ Manage ; 361: 121169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38815425

RESUMO

Thermal desorption is a preferred technology for site remediation due to its various advantages. To ensure the effective removal of different pollutants in practical applications, it is necessary to understand the kinetic behaviors and removal mechanisms of pollutants in thermal desorption process. This paper explored the thermal desorption processes of five organic pollutants (nitrobenzene, naphthalene, n-dodecane, 1-nitronaphthalene, and phenanthrene) at 50-350 °C in two different subsoils with 6-18% moisture content. The results suggested that the thermal desorption process was well-fitted by the exponential decay model (R2 = 0.972-0.999) and could be divided into two distinct stages. The first stage was relatively fast and highly influenced by soil moisture, while the second stage showed a slower desorption rate due to the constraints imposed by the soil texture and structure. The influence of soil moisture on thermal desorption depended on the octanol/water partition coefficient (KOW) of pollutants. Pollutants with log KOW values lower than the critical value exhibited enhanced thermal desorption, while those with log KOW values higher than the critical value were inhibited. The critical value of log KOW might be between 3.33 and 4.46. Changes in soil texture and structure caused by heating promoted thermal desorption, especially for naphthalene, 1-nitronaphthalene and phenanthrene. The differences in texture and structure between the two soils diminished as the temperature increased. Finally, an extended kinetic model under changing temperature conditions was derived, and the simulation results for the two subsoils were very close to the actual thermogravimetric results, with the differences ranging from -1.28% to 0.94% and from -0.67% to 1.35%, respectively. These findings propose new insights into the influencing mechanisms of soil moisture and structure on the thermal desorption of organic pollutants. The extended kinetic model can provide reference for future kinetic research and guide practical site remediation.


Assuntos
Naftalenos , Poluentes do Solo , Solo , Poluentes do Solo/química , Cinética , Solo/química , Naftalenos/química , Fenantrenos/química , Recuperação e Remediação Ambiental/métodos
6.
J Environ Sci Health B ; 59(3): 81-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38179701

RESUMO

Ethylene oxide (EtO), although banned for use, is still being detected in foodstuffs that have been fumigated to eradicate pests during storage and transport. Residual levels over the European Union's (EU) maximum residue limit (MRL) pose severe health concerns. Recent detection of EtO and its by-product 2-chloroethanol (2-CE) at alarming levels have led to product recalls throughout the EU. Here, a simple, automated headspace (HS)-trap method for the simultaneous determination of EtO and its derivative 2-CE by gas chromatography-mass spectrometry (GC-MS) at the required MRL of ≤ 0.05 mg/kg has been implemented. Syringe-based HS combined with backflushed trapping technology provided enrichment of multiple extractions from the same sample vial (known as multi-step enrichment or MSE®) to increase sensitivity for EtO and 2-CE analysis by GC-MS using single-ion-monitoring (SIM) mode. Method detection limits (MDLs) of 0.00059 mg/kg and 0.00219 mg/kg for EtO and 2-CE, respectively, were obtained without the need for manual handling, solvent extraction or derivatization methods. Recoveries were shown to average (n = 5) at 98% and 107% for EtO and 2-CE, respectively, and the reproducibility was <10% for both compounds.


Assuntos
Óxido de Etileno , Praguicidas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Etilenocloroidrina
7.
Metabolomics ; 19(7): 62, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351733

RESUMO

INTRODUCTION: Assessing intraspecific variation in plant volatile organic compounds (VOCs) involves pitfalls that may bias biological interpretation, particularly when several laboratories collaborate on joint projects. Comparative, inter-laboratory ring trials can inform on the reproducibility of such analyses. OBJECTIVES: In a ring trial involving five laboratories, we investigated the reproducibility of VOC collections with polydimethylsiloxane (PDMS) and analyses by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). As model plant we used Tanacetum vulgare, which shows a remarkable diversity in terpenoids, forming so-called chemotypes. We performed our ring-trial with two chemotypes to examine the sources of technical variation in plant VOC measurements during pre-analytical, analytical, and post-analytical steps. METHODS: Monoclonal root cuttings were generated in one laboratory and distributed to five laboratories, in which plants were grown under laboratory-specific conditions. VOCs were collected on PDMS tubes from all plants before and after a jasmonic acid (JA) treatment. Thereafter, each laboratory (donors) sent a subset of tubes to four of the other laboratories (recipients), which performed TD-GC-MS with their own established procedures. RESULTS: Chemotype-specific differences in VOC profiles were detected but with an overall high variation both across donor and recipient laboratories. JA-induced changes in VOC profiles were not reproducible. Laboratory-specific growth conditions led to phenotypic variation that affected the resulting VOC profiles. CONCLUSION: Our ring trial shows that despite large efforts to standardise each VOC measurement step, the outcomes differed both qualitatively and quantitatively. Our results reveal sources of variation in plant VOC research and may help to avoid systematic errors in similar experiments.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Reprodutibilidade dos Testes , Metabolômica , Terpenos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Plantas
8.
Nanotechnology ; 34(28)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37044085

RESUMO

Ge-rich Ge2Sb2Te5(GGST) is considered as one of the best candidates for industrial phase change memory production. GGST memory cells are generally embedded with Si or Ti nitride layers to prevent oxidation, as it leads to an undesired decrease of the GGST crystallization temperature. Furthermore, GGST films are usually doped with elements such as N, C, O, or Bi, aiming to delay GGST crystallization during the fabrication process as well as during memory cell operation. In this work, ultrahigh vacuum thermal desorption spectroscopy (TDS) was performed during isochronal annealing of a N-doped GGST film covered by a 10 nm-thick TiNxlayer. Desorption is observed before GGST crystallization, but the comparison between TDS andin situx-ray diffraction measurements shows that the main desorption peak, observed between 653 K and 703 K, occurs after GGST full crystallization. The most prominent desorbing species are Ar, N2, H2, and H. These results show that the TiNxpolycrystalline layer cannot prevent N atoms from leaving the GGST layer during annealing, suggesting a progressive change of the N-doped GGST chemical composition during thermal annealing and crystallization.

9.
Anal Bioanal Chem ; 415(22): 5463-5473, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423905

RESUMO

The purpose of this study was to offer a quick and efficient method to screen for multiple restricted additives in polymer materials. A solvent-free pyrolysis gas chromatography-mass spectrometry method was developed to simultaneously screen 33 restricted substances, comprising 7 phthalates, 15 bromine flame retardants, 4 phosphorus flame retardants, 4 ultraviolet stabilizers, and 3 bisphenols. The pyrolysis technique and temperatures affecting additive desorption were studied. Under optimized conditions, the instrument sensitivity was confirmed using in-house reference materials at concentrations of 100 mg/kg and 300 mg/kg. The linear range was between 100 and 1000 mg/kg in 26 compounds, and in the other compounds it was between 300 and 1000 mg/kg. In this study, in-house reference materials, certified reference materials, and proficiency testing samples were used for method verification. The relative standard deviation of this method was less than 15%, and recoveries ranged from 75.9 to 107.1% for most of the compounds, with a few exceeding 120%. Furthermore, the screening method was verified with 20 plastic products used in daily life and 170 recycled plastic particle samples from imports. The experimental results showed that phthalates were the main additives in plastic products, and among 170 recycled plastic particle samples, 14 samples were found to contain restricted additives. The main additives in recycled plastics were bis(2-ethylhexyl) phthalate, di-iso-nonyl phthalate, hexabromocyclododecane, and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether at concentrations between 374 and 34785 mg/kg, except for some results that exceeded the maximum measured value of the instrument. Compared with traditional methods, an important advantage is that this method simultaneously tests for 33 additives without sample pretreatment, covering a variety of additives limited by laws and regulations, and therefore can provide more comprehensive and thorough inspections.

10.
Anal Bioanal Chem ; 415(15): 2873-2890, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37036484

RESUMO

There is growing concern from scientists, policy makers, and the public about the contamination of natural and indoor environments with plastics, particularly micro/nanoplastics. Typically, characterizing microplastics in environmental samples requires extensive sample processing to isolate particles, followed by spectroscopic methodologies to identify particle polymer composition. Spectroscopic techniques are limited in their ability to provide polymer mass or advanced chemical composition (e.g., chemical additive content), which are important for toxicological assessments. To achieve mass fraction quantification and chemical characterization of plastics in environmental samples, many researchers have turned to thermoanalytical spectrometric approaches, particularly pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Sample preparation for Py-GC/MS may be approached similarly to techniques needed for spectroscopic approaches (e.g., isolate particles on a filter), employ pressurized solvent extraction, or use ultrafiltration techniques to concentrate nanoplastics. Great strides have been made in using calibration curves to quantify plastics in complex matrices. However, the approaches to the pyrolysis thermal program, as well as calibrant and sample preparation, are inconsistent, requiring refinement and harmonization. This review provides a critical synthesis of previous Py-GC/MS work and highlights opportunities for novel and improved Py-GC/MS analysis of plastics in the future.

11.
Anal Bioanal Chem ; 415(1): 137-155, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36396731

RESUMO

On-site analysis of volatile organic compounds (VOCs) with miniaturized gas chromatography-mass spectrometry (GC-MS) systems is a very rapidly developing field of application. While, on the one hand, major technological advances are improving the availability of these systems on the market, on the other hand, systematic studies to assess the performance of such instruments are still lacking. To fill this gap, we compared three portable GC-MS devices to a state-of-the-art benchtop (stationary) system for analysis of a standard mixture of 18 VOCs. We systematically compared analytical parameters such as the sensitivity and similarity of the signal response pattern and the quality of the obtained mass spectra. We found that the investigated mobile instruments (i) showed different response profiles with a generally lower number of identified analytes. Also, (ii) mass spectral reproducibility (% relative standard deviation (RSD) of the relative abundance of selective fragments) was generally worse in the mobile devices (mean RSD for all targeted fragments ~9.7% vs. ~3.5% in the stationary system). Furthermore, mobile devices (iii) showed a poorer mass spectral similarity to commercial reference library spectra (>20% deviation of fragment ion relative intensity vs. ~10% in the stationary GC-MS), suggesting a less reliable identification of analytes by library search. Indeed, (iv) the performance was better with higher-mass and/or more abundant fragments, which should be considered to improve the results of library searches for substance identification. Finally, (v) the estimation of the signal-to-noise ratio (S/N) in mobile instruments as a measure of sensitivity revealed a significantly lower performance compared to the benchtop lab equipment (with a ratio among medians of ~8 times lower). Overall, our study reveals not only a poor signal-to-noise ratio and poor reproducibility of the data obtained from mobile instruments, but also unfavorable results with respect to a reliable identification of substances when they are applied for complex mixtures of volatiles.


Assuntos
Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise , Razão Sinal-Ruído
12.
Environ Res ; 237(Pt 1): 116884, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574098

RESUMO

Thermally enhanced anoxic biodegradation is emerging as a promising method for removing PAHs from subsurface soil. However, some PAHs still remain in soil following remediation with thermally enhanced anoxic degradation due to low bioavailability of these residual PAHs. The effects of five surfactants (Tween 80, TX 100, Brij 30, SDS, and SDBS) on the desorption of PAHs, anoxic degradation of PAHs, and native bacteria in soil at high temperature (60 °C) were evaluated in this study. The desorption of PAHs in soil increased as surfactant concentration increased. Low doses of surfactants (0.08%, w/w) enhanced the growth of potential PAHs degrading bacteria and promoted the anoxic degradation of PAHs, whereas high doses of surfactants (0.3%-0.8%, w/w) displayed the opposite effect, and the degree of inhibition increased with increasing surfactant concentration. The results also indicated that the inhibitory effect of anionic surfactants (SDS and SDBS) on microbial growth and PAHs degradation is stronger than that of nonionic surfactants (Tween 80, TX 100 and Brij 30) at the same concentration. These results suggest a feasible way of enhancing the anoxic degradation of PAHs in soil where heat cannot be effectively utilized when in situ thermal desorption (ISTD) technology is used.

13.
Sensors (Basel) ; 23(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687805

RESUMO

Volatile organic compounds (VOCs) have recently received considerable attention for the analysis and monitoring of different biochemical processes in biological systems such as humans, plants, and microorganisms. The advantage of using VOCs to gather information about a specific process is that they can be extracted using different types of samples, even at low concentrations. Therefore, VOC levels represent the fingerprints of specific biochemical processes. The aim of this work was to develop a sensor based on a photoionization detector (PID) and a zeolite layer, used as an alternative analytic separation technique for the analysis of VOCs. The identification of VOCs occurred through the evaluation of the emissive profile during the thermal desorption phase, using a stainless-steel chamber for analysis. Emission profiles were evaluated using a double exponential mathematical model, which fit well if compared with the physical system, describing both the evaporation and diffusion processes. The results showed that the zeolite layer was selective for propionic acid molecules if compared to succinic acid molecules, showing linear behavior even at low concentrations. The process to define the optimal adsorption time between the propionic acid molecules was performed in the range of 5 to 60 min, followed by a thermal desorption process at 100 °C. An investigation of the relationship between the evaporation and diffusion rates showed that the maximum concentration of detected propionic acid molecules occurred in 15 min. Other analyses were performed to study how the concentration of VOCs depended on the desorption temperature and the volume of the analysis chamber. For this purpose, tests were performed using three analysis chambers with volumes of 25 × 10-6, 50 × 10-6, and 150 × 10-6 m3 at three different desorption temperatures of 20 °C, 50 °C, and 100 °C, respectively. The results demonstrated that the evaporation rate of the VOCs increased rapidly with an increasing temperature, while the diffusion rate remained almost constant and was characterized by a slow decay time. The diffusion ratio increased when using a chamber with a larger volume. These results highlight the capabilities of this alternative technique for VOC analysis, even for samples with low concentrations. The coupling of a zeolite layer and a PID improves the detection selectivity in portable devices, demonstrating the feasibility of extending its use to a wide range of new applications.

14.
J Environ Manage ; 328: 117200, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608456

RESUMO

A novel electromagnetic induction low temperature thermal desorption treatment (EMI LTTD) for petroleum hydrocarbons contaminated soil was introduced in this work. The removal rate of total petroleum hydrocarbons (TPH) under various factors, the morphology changes of soils as well as removal mechanism were investigated. Results suggested that increasing the heating temperature significantly increased the removal rate of TPH. At the beginning of 20 min, most of hydrocarbons (93.44-96.91 wt%) was removed with the temperature ranged from 200 °C to 300 °C. Besides, the initial contaminants concentration, particle size and thickness of soil slightly influenced the removal rate of TPH. Desorption kinetic study demonstrated that first-order model was well-described for desorption behavior. Response surface methodology analysis showed the temperature of 216 °C, the residence time of 21 min and the moisture content of 18% was an optimum condition recommended for potentially practical application. Under this condition, the results for the composition of hydrocarbons based on carbon number fractions indicated that the fractions of C10∼C16, C17∼C22 still existed in soil, while C23∼C28 was not detected after EMI LTTD treatment. Proposed mechanism was both hydrocarbons removed by evaporation at any temperature, while parts of heavy hydrocarbons was cracked within the soil close to induction medium, resulting in re-adsorption of light hydrocarbons. A buckwheat germination and growth test indicated that soil treated by EMI LTTD was potential in reutilization for planting.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes do Solo , Petróleo/análise , Solo/química , Poluentes do Solo/análise , Hidrocarbonetos/química , Poluição por Petróleo/análise , Biodegradação Ambiental
15.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446720

RESUMO

We present UV photofragmentation studies of the structural isomers paracetamol, 3-Pyridinepropionic acid (3-PPIA) and (R)-(-)-2-Phenylglycine. In particular, we utilized a new laser-based thermal desorption source in combination with femtosecond multiphoton ionization at 343 nm and 257 nm. The continuous nature of our molecule source, combined with the 50 kHz repetition rate of the laser, allowed us to perform these experiments at high throughput. In particular, we present detailed laser intensity dependence studies at both wavelengths, producing 2D mass spectra with highly differential information about the underlying fragmentation processes. We show that UV photofragmentation produces highly isomer-specific mass spectra, and assign all major fragmentation pathways observed. The intensity-dependence measurements, furthermore, allowed us to evaluate the appearance intensities for each fragmentation channel, which helped to distinguish competing from consecutive fragmentation pathways.


Assuntos
Lasers , Espectrometria de Massas
16.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446889

RESUMO

Fungal infection of grape berries (Vitis vinifera) by Botrytis cinerea frequently coincides with harvest, impacting both the yield and quality of grape and wine products. A rapid and non-destructive method for identifying B. cinerea infection in grapes at an early stage prior to harvest is critical to manage loss. In this study, zeolitic imidazolate framework-8 (ZIF-8) crystal was applied as an absorbent material for volatile extraction from B. cinerea infected and healthy grapes in a vineyard, followed by thermal desorption gas chromatography-mass spectrometry. The performance of ZIF-8 in regard to absorbing and trapping the targeted volatiles was evaluated with a standard solution of compounds and with a whole bunch of grapes enclosed in a glass container to maintain standard sampling conditions. The results from the sampling methods were then correlated to B. cinerea infection in grapes, as measured and determined by genus-specific antigen quantification. Trace levels of targeted compounds reported as markers of grape B. cinerea infection were successfully detected with in-field sampling. The peak area counts for volatiles 3-octanone, 1-octen-3-one, 3-octanol, and 1-octen-3-ol extracted using ZIF-8 were significantly higher than values achieved using Tenax®-TA from field testing and demonstrated good correlation with B. cinerea infection severities determined by B. cinerea antigen detection.


Assuntos
Vitis , Vinho , Vitis/química , Vinho/análise , Botrytis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Frutas/química
17.
Environ Monit Assess ; 195(7): 869, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347444

RESUMO

Real-time online monitoring of volatile organic compounds (VOCs) in ambient air is crucial for timely and effective human health protection. Here, we developed an innovative, automated two-staged adsorption/thermal desorption gas chromatography/mass spectrometry (GC/MS) system for real-time online monitoring of 117 regulated volatile organic compounds (VOCs). This system comprised a sampling unit, water management trap, two-staged adsorption/thermal desorption unit, thermoelectric coolers (TECs), and a commercial GC/MS system. By implementing a micro-purge-and-trap (MP & T) step and a two-staged adsorption/thermal desorption unit, the presence of interfering substances was effectively minimized. The utilization of a heart-cutting GC, combined with a single MS detector, facilitated the precise separation and detection of 117 C2-C12 VOCs, while circumventing the identification and coelution challenges commonly associated with traditional GC-FID or GC-FID/MS methods. The performance of our newly developed online system was meticulously optimized and evaluated using standard gas mixtures. Under optimal conditions, we achieved impressive results, with R2 values ≥ 0.9946 for the standard linear curves of all 117 VOCs, demonstrating a precision (RSD) ranging from 0.2% to 6.4%. When applied in the field monitoring, the concentration drifts for 10 ppbv standard gas mixtures were 0.01-5.64% within 24 h. Our study developed a system for online monitoring of 117 atmospheric VOCs with relatively high accuracy and robustness.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Adsorção , Monitoramento Ambiental/métodos , Sistemas On-Line , Gases/análise
18.
Environ Res ; 211: 113101, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292242

RESUMO

As a kind of typical veterinary drug, fluoroquinolone antibiotics (FQs) are widely used in the field of livestock and poultry breeding, but these FQs escape to surrounding soil through various pathways, polluting soil through long-term accumulation. Current study proposed a clean technology named thermal desorption to deal with FQs contaminated soils. It was observed that time, temperature and soil particle size were the critical factors in FQs thermal desorption. Results of the study showed that higher temperature was more effective in the removal of FQs, while removal of FQs attached with finer particles was more difficult compared to coarse particles. Fine soil particles (0.6-0.85 mm) were decontaminated up 99.4% when treated with 400 °C for 60min. Thermal desorption of FQs from contaminated soil was governed by first-order kinetics. Based on the detection of exhaust gas components, a possible thermal desorption mechanism was proposed. Study suggested that thermal desorption was a clean and effective remediation method to treat FQs-contaminated soils without generating any further waste.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Animais , Fluoroquinolonas/análise , Gado , Aves Domésticas , Solo , Poluentes do Solo/análise
19.
J Sep Sci ; 45(15): 2968-2976, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35686932

RESUMO

The reactive gases perfluoroisobutene and carbonyl fluoride are highly toxic and difficult to analyze in air. For this paper, the available sampling and analysis methods involving gas chromatography/mass spectrometry were investigated for their potential to give unambiguous identification and quantification of perfluoroisobutene and carbonyl fluoride, for which no such methods exist. Although high concentrations of perfluoroisobutene could be analyzed directly by manual split injection, sorbent sampling followed by thermal desorption GC/MS allowed lower concentrations to be analyzed. However, a significant degradation of perfluoroisobutene observed after thermal desorption analysis inspired the use of derivatization of perfluoroisobutene with 3,4-dimercaptotoluene. The use of Tenax TA sorbent tubes spiked with 3,4-dimercaptotoluene and trimethylamine in a molar ratio of 1:8 proved successful for the quantification of a unique perfluoroisobutene derivative, and the method was validated for atmospheres in the range of 0.13-152 ppb with a relative standard deviation of less than 20% and an accuracy of 90%. Although carbonyl fluoride was less stable than perfluoroisobutene, direct analysis was possible at high concentrations but the response was not linear. The 3,4-dimercaptotoluene derivatization method developed was also applicable for quantification of carbonyl fluoride atmospheres.


Assuntos
Poluentes Atmosféricos , Fluorocarbonos , Poluentes Atmosféricos/análise , Aldeídos , Fluorocarbonos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Gases/análise
20.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560314

RESUMO

Rapid and accurate detection of lethal volatile compounds is an emerging requirement to ensure the security of the current and future society. Since the threats are becoming more complex, the assurance of future sensing devices' performance can be obtained solely based on a thorough fundamental approach, by utilizing physics and chemistry together. In this work, we have applied thermal desorption spectroscopy (TDS) to study dimethyl methylophosphate (DMMP, sarin analogue) adsorption on zinc phthalocyanine (ZnPc), aiming to achieve the quantification of the sensing mechanism. Furthermore, we utilize a novel approach to TDS that involves quantum chemistry calculations for the determination of desorption activation energies. As a result, we have provided a comprehensive description of DMMP desorption processes from ZnPc, which is the basis for successful future applications of sarin ZnPc-based sensors. Finally, we have verified the sensing capability of the studied material at room temperature using impedance spectroscopy and took the final steps towards demonstrating ZnPc as a promising sarin sensor candidate.


Assuntos
Substâncias para a Guerra Química , Compostos Organometálicos , Substâncias para a Guerra Química/análise , Sarina , Compostos Organometálicos/química , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA