Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
Nano Lett ; 24(40): 12529-12535, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39348627

RESUMO

Gold nanoparticles possess unique photothermal properties and have gained considerable interest in biomedical research, particularly for photothermal therapy (PTT). This study focuses on evaluating the photothermal properties of gold nanorods (AuNRs) supported on glass substrates upon excitation with near-infrared (NIR) light. Two aspect ratios of AuNRs were electrostatically immobilized onto glass with controlled coverage. In situ X-ray diffraction (XRD) was performed to evaluate the photothermal behavior and morphological changes of the supported AuNRs during NIR laser irradiation. The XRD data sets were corroborated with scanning electron microscopy and Vis-NIR spectroscopy characterization. XRD revealed a linear temperature increase with laser power, aligning with theoretical predictions, and a slope dependent on the AuNR coverage, until the onset of morphology transformations around 120 °C. This study provides valuable insights into the photothermal properties of supported AuNRs, crucial for their application in PTT.

2.
Nano Lett ; 24(32): 9868-9873, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39093303

RESUMO

The coefficients of piezoelectricity and thermal expansion are generally positive due to the bond anharmonicity. For converse piezoelectricity, the electrostrain obtained in prevalent ceramics is only around 1%. Here we propose that the coordination transition of metal cations may make a paradigm shift. Through first-principles calculations, we predict a series of low-energy phases with distinct coordinations for Ag ions in superionic conductor AgCrX2 (X = S, Se), including ferroelectric and nonpolar phases with distinct interlayer distances. The mobile feature of Ag ions, which can be attributed to its complex coordination chemistry, can facilitate transformation between various coordination phases. Such facile transitions with ultralow barriers can be driven by applying either pressure, an electric field, or a change in temperature, giving rise to various exotic effects, including electrostrain, negative piezoelectricity, and negative thermal expansion. All with unprecedented giant constants, those mechanisms stem from the coordination transitions, distinct from the weak linear effects in previous reports.

3.
Small ; 20(2): e2305219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658514

RESUMO

Materials with negative thermal expansion (NTE) attract significant research attention owing to their unique physical properties and promising applications. Although ferroelectric phase transitions leading to NTE are widely investigated, information on antiferroelectricity-induced NTE remains limited. In this study, single-crystal and polycrystalline Pb2 CoMoO6 samples are prepared at high pressure and temperature conditions. The compound crystallizes into an antiferroelectric Pnma orthorhombic double perovskite structure at room temperature owing to the opposite displacements dominated by Pb2+ ions. With increasing temperature to 400 K, a structural phase transition to cubic Fm-3m paraelectric phase occurs, accompanied by a sharp volume contraction of 0.41%. This is the first report of an antiferroelectric-to-paraelectric transition-induced NTE in Pb2 CoMoO6 . Moreover, the compound also exhibits remarkable NTE with an average volumetric coefficient of thermal expansion αV = -1.33 × 10-5 K-1 in a wide temperature range of 30-420 K. The as-prepared Pb2 CoMoO6 thus serves as a prototype material system for studying antiferroelectricity-induced NTE.

4.
Small ; : e2406348, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212638

RESUMO

Recently, single-band ratiometric (SBR) thermometry has emerged as an innovative approach to traditional fluorescence thermometry, overcoming uncertainties associated with emission spectrum overlap or scattering while maintaining high spatial resolution and remote monitoring. This paper presents a novel Cs2NaEuCl6 perovskite prepared through a slow-cooling solution method. Additionally, it proposes a temperature sensor model that relies on the thermal quenching of charge-transfer state absorption. Mechanical studies highlight the role of lattice positive thermal expansion in affecting Eu3+ emission. Conversely, a significant emission enhancement is observed upon excitation corresponding to both the ground state and excited state absorption. The distinct luminescent behavior of this Eu3+-activated halide perovskite model makes it suitable for developing a highly sensitive SBR-type sensor with a relative sensitivity (Sr) exceeding 1.5% K-1 and temperature resolution (𝛿T) below 1 K at room temperature. Furthermore, it demonstrates the thermal stability during multiple heating-cooling cycles. Finally, the practical applicability of the proposed SBR model is demonstrated by employing a self-manufactured film sensor that enables precise real-time temperature detection for electronic components. The work is regarded as a significant stride toward the development of cutting-edge and exquisitely sensitive thermometers based on lanthanide-based halide double perovskites.

5.
Small ; : e2312289, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924308

RESUMO

Much effort is made to achieve the negative thermal expansion (NTE) control, but rare methods reached the improvement of intrinsic NTE. In the present work, a significantly enhanced NTE is realized in Cu2P2O7 by applying low pressure. Especially, the volumetric coefficient of thermal expansion (CTE) of Cu2P2O7 reached to -50.0 × 10-6 K-1 (150-325K) under 0.25 GPa, which is increased by 47.5% compared to its NTE in a similar temperature range under atmosphere pressure. This character enables a more effective manifestation of the thermal compensation role of Cu2P2O7 in composites. The enhanced NTE mechanisms are analyzed by high pressure synchrotron X-ray diffraction, neutron diffraction at variable temperature and pressure, as well as density functional theory (DFT) calculations. The results show that applied pressure accelerates the contraction of the distance between adjacent CuO layers and CuO columns. Meanwhile, the low-frequency phonon contribution to NTE in α-Cu2P2O7 is improved. This work is meaningful for the exploration of methods to enhance NTE and the practical application of NTE materials.

6.
Small ; : e2405472, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367552

RESUMO

Supramolecular materials provide a pathway for achieving precise, highly ordered structures while exhibiting remarkable response to external stimuli, a characteristic not commonly found in covalently bonded materials. The design of self-assembled materials, where properties could be predicted/design from chemical nature of the individual building blocks, hinges upon our ability to relate macroscopic properties to individual building blocks - a feat which has thus far remained elusive. Here, a design approach is demonstrated to chemically engineer the thermal expansion coefficient of 2D supramolecular networks by over an order of magnitude (\boldmath 120 to \boldmath 1000 × 10-6 K-1). This systematic study provides a clear pathway on how to carefully design the thermal expansion coefficient of a 2D molecular assembly. Specifically, a linear relation has been identified between the length of decorating alkyl chains and the thermal expansion coefficient. Counter-intuitively, the shorter the chains the larger is the thermal expansion coefficient. This precise control over thermo-mechanical properties marks a significant leap forward in the de-novo design of advanced 2D materials. The possibility to chemically engineer their thermo-mechanical properties holds promise for innovations in sensors, actuators, and responsive materials across diverse fields.

7.
Small ; 20(24): e2309992, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169093

RESUMO

Transparent dielectric ceramics are splendid candidates for transparent pulse capacitors (TPCs) due to splendid cycle stability and large power density. However, the performance and service life of TPCs at present are threatened by overheating damage caused by dielectric loss. Here, a cooperative optimization strategy of microstructure control and superparaelectric regional regulation is proposed to simultaneously achieve excellent energy storage performance and real-time temperature monitoring function in NaNbO3-based ceramics. By introducing aliovalent ions and oxides with large bandgap energy, the size of polar nanoregions is continuously reduced. Due to the combined effect of increased relaxor behavior and fine grains, excellent comprehensive performances are obtained through doping appropriate amounts of Bi, Yb, Tm, and Zr, Ta, Hf in A- and B-sites of the NaNbO3 matrix, including recoverable energy storage density (5.39 J cm-3), extremely high energy storage efficiency (91.97%), ultra-fast discharge time (29 ns), and superior optical transmittance (≈47.5% at 736 nm). Additionally, the phenomenon of abnormal fluorescent negative thermal expansion is realized due to activation mechanism of surface phonon at high temperatures that can promote the formation of [Yb···O]-Tm3+ pairs, showing great potential in real-time temperature monitoring of TPCs. This research provides ideas for developing electronic devices with multiple functionalities.

8.
Small ; : e2403000, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923124

RESUMO

Negative thermal expansion (NTE) compounds provide a solution for the mismatch of coefficients of thermal expansion in highly integrated device design. However, the current NTE compounds are rare, and how to effectively design new NTE compounds is still challenging. Here, a new concept is proposed to design NTE compounds, that is, to increase the flexibility of framework structure by expanding the space in framework structure compounds. Taking the parent compound NaZr2(PO4)3 as a case, a new NTE system AIBIICIII(MoO4)3 (A = Li, Na, K, and Rb; B = Mg and Mn; C = Sc, In, and Lu) is designed. In these compounds, the large volume of MoO4 tetrahedron is used to replace the small volume of PO4 tetrahedron in NaZr2(PO4)3 to enhance structural space and NTE performance. Simultaneously, a joint study of temperature-dependent X-ray diffraction, Raman spectroscopy, and the first principles calculation reveals that the NTE in AIBIICIII(MoO4)3 series compounds arise from the coupled oscillation of polyhedral. Large-radius ions are conducive to enhancing the space and softening the framework structure to achieve the enhancement of NTE. The current strategy for designing NTE compounds is expected to be adopted in other compounds to obtain more NTE compounds.

9.
Chem Rec ; 24(1): e202300247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933973

RESUMO

The high-temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen-based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (>800 °C) to intermediate/low operating temperature (400 °C

10.
J Microsc ; 295(2): 191-198, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38482774

RESUMO

A new method is proposed to measure the linear coefficient of thermal expansion (CTE) of solid metals and ceramics of micron-sized dimensions. This approach uses a focused ion beam (FIB) to extract and transfer a slab of the sample, typically (15-20) ×10 × (3-5) µm onto a Micro-Electro-Mechanical Systems (MEMS) in situ heating holder inside a scanning electron microscope (SEM). CTE is thereafter calculated by image correlating the change of length (ΔL) between the fiducial marks on the slab as a function of temperature, taking advantage of the temperature calibration of the MEMS heating holder and nanometre resolution of the scanning electron microscope. The CTE results are validated to be consistent with standard copper and silicon. We further demonstrate the method on a graphene platelet reinforced copper composite and a graphite filler phase isolated from a bulk sample, these represent materials that cannot be practically synthesised or isolated at the macro-scale. Errors associated with the measurement are discussed.

11.
Nanotechnology ; 35(17)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38150722

RESUMO

Strain built-in electronic and optoelectronic devices can influence their properties and lifetime. This effect is particularly significant at the interface between two-dimensional materials and substrates. One such material is epitaxial hexagonal boron nitride (h-BN), which is grown at temperatures often exceeding 1000 °C. Due to the high growth temperature, h-BN based devices operating at room temperature can be strongly affected by strain generated during cooling due to the differences in lattice thermal expansion of h-BN and the substrate. Here, we present results of temperature-dependent Raman studies of the in-plane E2ghighphonon mode in the temperature range of 300-1100 K measured for h-BN grown by metalorganic vapor phase epitaxy. We observe a change, by an order of magnitude, in the rate of the temperature-induced frequency shift for temperatures below 900 K, indicating a strong reduction of the effective h-BN/substrate interaction. We attribute this behavior to the creation of h-BN wrinkles which results in strain relaxation. This interpretation is supported by the observation that no change of layer/substrate interaction and no wrinkles are observed for delaminated h-BN films transferred onto silicon. Our findings demonstrate that wrinkle formation is an inherent process for two-dimensional materials on foreign substrates that has to be understood to allow for the successful engineering of devices based on epitaxially grown van der Waals heterostructures.

12.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34706935

RESUMO

π-stacking in ground-state dimers/trimers/tetramers of N-butoxyphenyl(naphthalene)diimide (BNDI) exceeds 50 kcal ⋅ mol-1 in strength, drastically surpassing that for the *3[pyrene]2 excimer (∼30 kcal ⋅ mol-1; formal bond order = 1) and similar to other weak-to-moderate classical covalent bonds. Cooperative π-stacking in triclinic (BNDI-T) and monoclinic (BNDI-M) polymorphs effects unusually large linear thermal expansion coefficients (α a , α b , α c , ß) of (452, -16.8, -154, 273) × 10-6 ⋅ K-1 and (70.1, -44.7, 163, 177) × 10-6 ⋅ K-1, respectively. BNDI-T exhibits highly reversible thermochromism over a 300-K range, manifest by color changes from orange (ambient temperature) toward red (cryogenic temperatures) or yellow (375 K), with repeated thermal cycling sustained for over at least 2 y.

13.
Molecules ; 29(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39064914

RESUMO

Wood characterized by desired mechanical properties and wood joining material is essential for creating wooden structures. The polymer adhesives are suitable for such applications due to the possibility of energy dissipation from stresses generated by wooden structures and the elimination of thermal bridging, which are common problems in metal joining materials. This research focuses on the thermophysical properties of the laboratory-prepared flexible and rigid polyurethanes to select an appropriate polymer adhesive. Our results showed that the highest thermal stability was in the case of the new PSTF-S adhesive, which reached 230 °C, but the lowest mass loss in the air environment was around 54% for the PS material. The mean thermal expansion coefficient for F&R PU adhesives was 124-164∙10-6 K-1. The thermal diffusivity of examined adhesives varied between 0.100 and 0.180 mm2s-1. The thermal conductivity, depending on the type of polyurethane, was in the 0.13-0.29 W∙m-1∙K-1 range. The relative decrease in thermal diffusivity after heating the adhesives to 150 °C was from 2% for materials with the lowest diffusivity to 23% for the PU with the highest value of heat transfer. It was found that such data can be used to simulate wooden construction joints in future research.

14.
J Xray Sci Technol ; 32(2): 443-458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217631

RESUMO

BACKGROUND: The environmental impact on industrial X-ray tomography systems has gained its attention in terms of image precision and metrology over recent years, yet is still complex due to the variety of applications. OBJECTIVE: The current study explores the photothermal repercussions of the overall radiation exposure time. It shows the emerging dimensional uncertainty when measuring a stainless steel sphere by means of circular tomography scans. METHODS: The authors develop a novel frame difference method for X-ray radiographies to evaluate the spatial changes induced in the projected absorption maps on the X-ray panel. The object of interest has a simple geometry for the purpose of proof of concept. The dominant source of the observed radial uncertainty is the photothermal effect due to high-energy X-ray scattering at the metal workpiece. Thermal variations are monitored by an infrared camera within the industrial tomography system, which confines that heat in the industrial grade X-ray system. RESULTS: The authors demonstrate that dense industrial computed tomography programs with major X-ray power notably affect the uncertainty of digital dimensional measurements. The registered temperature variations are consistent with dimensional changes in radiographies and hence form a source of error that might result in visible artifacts within the 3D image reconstruction. CONCLUSIONS: This contribution is of fundamental value to reach the balance between the number of projections and radial uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography.


Assuntos
Aço Inoxidável , Tomografia Computadorizada por Raios X , Raios X , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Artefatos
15.
Angew Chem Int Ed Engl ; 63(23): e202405514, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38584585

RESUMO

Pyroelectric materials hold significant potential for energy harvesting, sensing, and imaging applications. However, achieving high-performance pyroelectricity across a wide temperature range near room temperature remains a significant challenge. Herein, we demonstrate a single crystal of Fe(II) spin-crossover compound shows remarkable pyroelectric properties accompanied by a thermally controlled spin transition. In this material, the uniaxial alignment of polar molecules results in a polarization of the lattice. As the molecular geometry is modulated during a gradual spin transition, the polar axis experiences a colossal thermal expansion with a coefficient of 796×10-6 K-1. Consequently, the material's polarization undergoes significant modulation as a secondary pyroelectric effect. The considerable shift in polarization (pyroelectric coefficient, p=3.7-22 nC K-1cm-2), coupled with a low dielectric constant (ϵ'=4.4-5.4) over a remarkably wide temperature range of 298 to 400 K, suggests this material is a high-performance pyroelectric. The demonstration of pyroelectricity combined with magnetic switching in this study will inspire further investigations in the field of molecular electronics and magnetism.

16.
Angew Chem Int Ed Engl ; : e202415821, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252675

RESUMO

Molecular crystals capable of colossal thermal expansion (TE) are fascinating owing to their substantial and continuous volume changes and reasonably linear responses to temperature. This makes them promising candidates for micromachine applications. Macroscopic motion is driven by subtle yet cooperative movements of molecules that respond to the thermal motions of dynamic functional units. The study of p-TIPS-DSB presented here offers a compelling case highlighting the relationship between the degree of dynamicity of functional units and TE behavior. In its α-phase, the p-TIPS-DSB crystal undergoes an irreversible martensitic transition to the ß-phase, accompanied by significant cooperative interlayer shear. This process substantially enhances the mobility of the side-chains driven by the increased free volume surrounding them. This nearly doubles the volumetric TE coefficient from 255.3 (10) to 444.9 (32) MK-1, particularly in the actuation direction from 175.0 (7) to 291.7 (20) MK-1, enabling about 4.5% elongation/contraction. As demonstrated here, p-TIPS-DSB exhibits a decent force density (> 1.4 × 107 N m-3) and precise motion control capabilities due to its hysteresis-free and non-abrupt TE nature. Furthermore, we demonstrated the limited operating distance of colossal TE materials can be amplified by utilizing levers, highlighting the high potential of these materials for use in micromachines.

17.
Angew Chem Int Ed Engl ; 63(12): e202319587, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226832

RESUMO

Radical cation salts of π-conjugated polycycles are rich in physical properties. Herein, two kinds of hetera-buckybowls, ethoxy-substituted trithiasumanene (3SEt) and triselenasumanene (3SeEt), are synthesized as electron donors. Galvanostatic oxidation of them affords radical cation salts (3SEt)5 (TTFMPB)3 , (3SeEt)5 (TTFMPB)3 , (3SEt)4 PMA, and (3SeEt)4 PMA, where PMA is Keggin-type phosphomolybdate and TTFMPB is tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate. In these salts, 3SEt/3SeEt are partially charged and show distinct conformation change with the site charge and counter anions. In TTFMPB salts, (TTFMPB)- forms hexagonal channels that accommodate the packing columns of 3SEt/3SeEt. In particular, (3SEt)5 (TTFMPB)3 adopts the R3c space group and is a polar crystal with the columns of 3SEt all in the up-bowl direction. The PMA salts of 3SEt/3SeEt are polar crystals (C2 space group) with 3SEt/3SeEt being planar and forming columnar stacks. (3SeEt)4 PMA shows a structural modulation below 200 K, namely, negative thermal expansion (NTE) of the unit cell volume and enlargement of the intermolecular distances between neighboring 3SeEt molecules. The four salts are semiconductors with an activation energy of 0.18-0.38 eV. The conductivity of (3SeEt)4 PMA shows a reversible transition upon cooling and heating, in accordance to the NTE structural modulation. This work paves the way toward conducting materials based on hetera-buckybowls.

18.
Angew Chem Int Ed Engl ; 63(13): e202401302, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38353130

RESUMO

Negative thermal expansion (NTE) is crucial for controlling the thermomechanical properties of functional materials, albeit being relatively rare. This study reports a giant NTE (αV ∼-9.2 ⋅ 10-5  K-1 , 100-200 K; αV ∼-3.7 ⋅ 10-5  K-1 , 200-650 K) observed in NaB(CN)4 , showcasing interesting ultralight properties. A comprehensive investigation involving synchrotron X-ray diffraction, Raman spectroscopy, and first-principles calculations has been conducted to explore the thermal expansion mechanism. The findings indicate that the low-frequency phonon modes play a primary role in NTE, and non-rigid vibration modes with most negative Grüneisen parameters are the key contributing factor to the giant NTE observed in NaB(CN)4 . This work presents a new material with giant NTE and ultralight mass density, providing insights for the understanding and design of novel NTE materials.

19.
Rep Prog Phys ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36972582

RESUMO

We review a set of ideas concerning the flexibility of network materials, broadly defined as structures in which atoms form small polyhedral units that are connected at corners. One clear example is represented by the family of silica polymorphs, with structures composed of corner-lined SiO4tetrahedra. TheRigid Unit Mode(RUM) is defined as any normal mode in which the structural polyhedra can translate and/or rotate without distortion, and since forces associated with changing the size and shape of the polyhedra are much stronger than those associated with rotations of two polyhedra around a shared vertex, the RUMs might be expected to have low frequencies compared to all other phonon modes. In this paper we discuss the flexibility of network structures, and how RUMs can arise in such structures, both in principle and in a number of specific examples of real systems. We also discuss applications of the RUM model, particularly for our understanding of phenomena such as displacive phase transitions and negative thermal expansion in network materials. .

20.
Small ; 19(15): e2207202, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36683197

RESUMO

As an important multiferroic material, pure and low-dimensional phase-stable bismuth ferrite has wide applications. Herein, one-pot hydrothermal method was used to synthesize bismuth ferrite. Almost pure Bi2 Fe4 O9 , BiFeO3 , and their mixture were successfully obtained by controlling the KOH concentration in the hydrothermal solutions. The as-prepared Bi2 Fe4 O9 products were crystalline with Pbam space group, had nanosheet morphology, and tended to aggregate into nanofloret or random stacking. Each Bi2 Fe4 O9 nanosheet was a single crystal with (001) plane as its exposed surface. Single unit-cell layered Bi2 Fe4 O9 nanosheets had a uniform thickness of 1 nm. The surface energies of various (100), (010), and (001) planes were 3.6-4.0, 5.6-15.1, and 1.7-3.0 J m-2 , respectively, in the Bi2 Fe4 O9 crystal. The formation mechanism and structural model of the as-prepared single unit-cell layered Bi2 Fe4 O9 nanosheets have been given. The growth of Bi2 Fe4 O9 nanosheets was discussed. Thermal analysis showed that the Bi2 Fe4 O9 phase was stable up to 1260 K. The thermal expansion behavior of the Bi2 Fe4 O9 nanosheet was nonlinear. The thermal expansion coefficients of the ultrathin Bi2 Fe4 O9 nanosheets on the a-, b-, c-axes, and on the unit-cell volume V were determined, showing an anisotropic thermal expansion behavior. This study is helpful for the controllable synthesis of ultrathin Bi2 Fe4 O9 nanosheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA