Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37299354

RESUMO

The aim of this study is to propose a test method for the determination of the quality of transformer paper insulation. For this purpose, the oil/cellulose insulation systems were exposed to various accelerated aging tests. The results of the aging experiments of normal Kraft and thermally upgraded papers, two different types of transformer oil (mineral and natural ester), and copper are shown. Aging was carried out in various experiments at 150 °C, 160 °C, 170 °C, and 180 °C with dry (initial values ≤ 0.5%) and moistened cellulose insulation (initial values 3-3.5%). Following insulating oil and paper, degradation markers were measured: the degree of polymerization, tensile strength, furan derivates, methanol/ethanol, acidity, interfacial tension, and dissipation factor. It was found that the aging of cellulose insulation in cycles was 1.5-1.6 times faster in comparison to continuous aging, due to the more pronounced effect of hydrolytic mechanism in cyclic aging owing to the produced and absorbed water. Furthermore, it was observed that the high initial water content in cellulose increases the aging rate two to three times more than in the dry experimental setup. The proposed aging test in cycles can be used to achieve faster aging and to compare the quality of different insulating papers.

2.
Carbohydr Polym ; 252: 117196, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183636

RESUMO

Cellulosic pulp has been processed into insulation paper since the earliest days of electrical engineering. This polymer synthetized by nature has proved to be competitive to man-made plastics throughout the last century and is still widely used in electrical power transformers. The high working temperatures prevailing in such apparatuses and the desired lifespans of up to 40 years shifted the thermal stability of cellulose to the center of attention of many researchers. In this literature review, a summary of theories and recent insights regarding the processes upon thermal degradation of cellulose in the temperature range relevant for electrical power transformers is given, followed by an overview of strategies to improve the thermal stability of cellulosic insulators. Special emphasis is placed on the discussion of additives and modification agents and their action modes, and on the understanding how successful upgrading of cellulose towards high thermal stability is achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA