Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Clin Lab Sci ; 50(5): 567-577, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33067202

RESUMO

A century ago a fat-soluble vitamin from leafy vegetables, later named vitamin E, was discovered to enhance fertility in animals. Vitamin E consists of 8 isomers of tocopherols and tocotrienols, each containing chromanol groups that confer antioxidant properties and differ only in the 15-carbon saturated phytyl poly-isoprenoid side chain of tocopherols and the 15-carbon unsaturated farnesyl poly-isoprenoid side chain of tocotrienols. Although tocotrienol was first isolated from rubber plants in 1964, its importance in multiple disease processes was not recognized until two decades later, when the cholesterol-lowering and anti-cancer effects were first reported. Tocotrienol (T3) protects against radiation injury and mitochondrial dysfunction by preventing opening of the mitochondrial permeability transition pore, thereby inhibiting loss of the active site for oxidative phosphorylation, thioretinaco ozonide oxygen ATP, from mitochondria by complex formation with the active site, TR2CoO3O2NAD+H2PO4 -T3. The preventive effects of tocotrienol on vascular disease, cancer, neurodegeneration and aging are attributed to its effects on cellular apoptosis and senescence. Geranylgeraniol is an important intermediate in the biosynthesis of cholesterol, and cholesterol auxotrophy of lymphoma cell lines and primary tumors is attributed to loss of squalene monooxygenase and accumulation of intracellular squalene. Geranylgeraniol and tocotrienol have synergistic inhibitory effects on growth and HMG CoA reductase activity, accompanied by reduction of membrane KRAS protein of cultured human prostate carcinoma cells. Since cholesterol inhibits opening of the mPTP pore of mitochondria, inhibition of cholesterol biosynthesis by these effects of tocotrienol and geranylgeraniol produces increased mitochondrial dysfunction and apoptosis from loss of the active site of oxidative phosphorylation from mitochondria.


Assuntos
Diterpenos/metabolismo , Homocisteína/metabolismo , Tocotrienóis/metabolismo , Envelhecimento/fisiologia , Animais , Arteriosclerose/metabolismo , Colesterol/metabolismo , Homocisteína/análogos & derivados , Humanos , Mitocôndrias/metabolismo , NAD/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Esqualeno/metabolismo , Esqualeno/farmacologia , Tocotrienóis/farmacologia , Vitamina B 12/análogos & derivados
2.
Methods Mol Biol ; 1866: 285-310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30725425

RESUMO

The objective of the proposed clinical interventional trial is to demonstrate the efficacy of a novel therapeutic strategy in subjects with cancer and hyperhomocysteinemia. Following discovery of abnormal homocysteine thiolactone metabolism in cultured malignant cells, thioretinamide, the amide synthesized from retinoic acid and homocysteine thiolactone, and thioretinaco, the complex formed from cobalamin and thioretinamide, were demonstrated to have antineoplastic, anticarcinogenic, and anti-atherogenic properties in animal models. Retinol, ascorbate, and homocysteine thiolactone are necessary for biosynthesis of thioretinamide and thioretinaco by cystathionine synthase and for formation of thioretinaco ozonide from thioretinamide, cobalamin, and ozone. Thioretinaco ozonide is required for prevention of abnormal oxidative metabolism, aerobic glycolysis, suppressed immunity, and hyperhomocysteinemia in cancer.The pancreatic enzyme therapy of cancer promotes catabolism of proteins, nucleic acids, and glycosaminoglycans with excess homocysteinylated amino groups resulting from abnormal accumulation of homocysteine thiolactone in malignant cells. Dietary deficiencies of pyridoxal, folate, cobalamin, and nitriloside contribute to hyperhomocysteinemia in cancer, and in protein energy malnutrition. A deficiency of dietary sulfur amino acids downregulates cystathionine synthase, causing hyperhomocysteinemia.The organic sulfur compound diallyl trisulfide increases hydrogen sulfide production from homocysteine in animal models, inhibits Stat3 signaling in cancer stem cells, and produces apoptosis of malignant cells. The furanonaphthoquinone compound napabucasin inhibits Stat3 signaling and causes mitochondrial dysfunction, decreased oxidative phosphorylation, and apoptosis of malignant cells. The protocol of the proposed clinical trial in subjects with myelodysplasia consists of thioretinamide and cobalamin as precursors of thioretinaco ozonide, combined with pancreatic enzyme extracts, diallyl trisulfide, napabucasin, nutritional modification to minimize processed foods, vitamin supplements, essential amino acids, and beneficial dietary fats and proteins.


Assuntos
Envelhecimento/fisiologia , Homocisteína/análogos & derivados , Homocisteína/uso terapêutico , Neoplasias/tratamento farmacológico , Fosforilação Oxidativa , Vitamina B 12/análogos & derivados , Adulto , Idoso , Drogas em Investigação/farmacologia , Drogas em Investigação/uso terapêutico , Homocisteína/farmacologia , Humanos , Licenciamento , Pessoa de Meia-Idade , Fosforilação Oxidativa/efeitos dos fármacos , Vitamina B 12/uso terapêutico
3.
Ann Clin Lab Sci ; 49(4): 425-438, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31471331

RESUMO

The purpose of this review is to elucidate how low blood cholesterol promotes mitochondrial dysfunction and mortality by the loss of thioretinaco ozonide from opening of the mitochondrial permeability transition pore (mPTP). Mortality from infections and cancer are both inversely associated with blood cholesterol, as determined by multiple cohort studies from 10 to 30 years earlier. Moreover, low-density lipoprotein (LDL) is inversely related to all-cause and/or cardiovascular mortality, as determined by followup study of elderly cohorts. LDL adheres to and inactivates most microorganisms and their toxins, causing aggregation of LDL and homocysteinylated autoantibodies which obstruct vasa vasorum and produce intimal microabscesses, the vulnerable atherosclerotic plaques. The active site of mitochondrial oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis is proposed to consist of thioretinaco, a complex of two molecules of thioretinamide with cobalamin, oxidized to the disulfonium thioretinaco ozonide and complexed with oxygen, nicotinamide adenine dinucleotide (NAD+), phosphate, and ATP. Loss of the active site complex from mitochondria results from the opening of the mPTP and from decomposition of the disulfonium active site by electrophilic carcinogens, oncogenic viruses, microbes, and by reactive oxygen radicals from ionizing and non-ionizing radiation. Suppression of innate immunity is caused by the depletion of adenosyl methionine because of increased polyamine biosynthesis, resulting in inhibition of nitric oxide and peroxynitrite biosynthesis. Opening of the mPTP produces a loss of thioretinaco ozonide from mitochondria. This loss impairs ATP biosynthesis and causes the mitochondrial dysfunction observed in carcinogenesis, atherosclerosis, aging and dementia. Cholesterol inhibits the opening of the mPTP by preventing integration of the pro-apoptotic Bcl-2-associated X protein (BAX) in the outer mitochondrial membrane. This inhibition explains how elevated LDL reduces mitochondrial dysfunction by preventing loss of the active site of oxidative phosphorylation from mitochondria.


Assuntos
Colesterol/toxicidade , Homocisteína/análogos & derivados , Homocisteína/toxicidade , Mitocôndrias/patologia , Mortalidade , Vitamina B 12/análogos & derivados , Humanos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Vitamina B 12/toxicidade
4.
Ann Clin Lab Sci ; 48(1): 126-131, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29531009

RESUMO

The indoleamine hormone melatonin is synthesized by the pineal gland, controls circadian rhythm, and is dependent upon adenosyl methionine for enzymatic synthesis of melatonin from N-acetyl serotonin. Pineal melatonin secretion declines dramatically with aging and dementia. Elevated plasma homocysteine is a risk factor for atherosclerosis and Alzheimer's disease, and the marked decline in adenosyl methionine with aging leads to dysregulation of methionine metabolism and hyperhomocysteinemia. Thioretinaco ozonide is a disulfonium complex formed from thioretinamide, cobalamin, and ozone, which binds the alpha and gamma-phosphate groups of adenosine triphosphate (ATP) and oxygen in the process of oxidative phosphorylation within mitochondria. Decreased adenosyl methionine concentrations with aging are attributed to the loss of thioretinaco ozonide from mitochondria, impairing adenosyl methionine synthesis from thioretinaco ozonide and ATP. Melatonin is present in mitochondria, where it inhibits the opening of the mitochondrial permeability transition pore, explaining its anti-oxidant and anti-apoptotic effects by reducing oxygen consumption, restoration of membrane potential and reduction of superoxide production. In aging, the enzyme cyclic nucleotide phosphodiesterase is lost from mitochondria by the opening of the permeability transition pore and disruption of the outer mitochondrial membrane, a process that is inhibited by melatonin. Thioretinaco ozonide is progressively lost from dysfunctional mitochondria by disruption of the outer mitochondrial membrane, explaining its depletion during the aging process. Accordingly, the anti-aging effects of diallyl trisulfide and metformin are attributable to inhibition of the opening of the mitochondrial permeability transition pore, preventing loss of thioretinaco ozonide from mitochondria. The hyperhomocysteinemia and suppressed immunity that are observed in atherosclerosis and dementia are attributed to the deficiency of adenosylmethionine caused by increased polyamine synthesis and decreased nitric oxide synthesis by host cells infected with pathogenic microbes. According to this analysis, the critical loss of thioretinaco ozonide from mitochondria through the opening of the permeability transition pore and disruption of the outer mitochondrial membrane by decreased melatonin secretion leads to the impaired oxidative phosphorylation, oxidative stress, calcium influx, apoptosis and mitochondrial dysfunction observed in aging and dementia.


Assuntos
Homocisteína/análogos & derivados , Hiper-Homocisteinemia/fisiopatologia , Melatonina/farmacologia , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , S-Adenosilmetionina/metabolismo , Vitamina B 12/análogos & derivados , Aterosclerose , Demência , Homocisteína/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Vitamina B 12/farmacologia
5.
Ann Clin Lab Sci ; 48(5): 677-687, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30373877

RESUMO

Following the discovery that caloric restriction extends the lifespan of many species of animals, the free radical theory of aging attributes the occurrence of oxidized nucleic acids, proteins, and lipids to reactive oxygen radical species originating from the metabolism of foods and the diminished efficacy of oxidative metabolism. Because of the decline of many critical neuro-hormones in aging, the neuroendocrine theory of aging attributes these changes to reduced feedback control of hormone production by the hypothalamus. Several rare genetic diseases attribute accelerated aging to changes in deoxyribonucleic acid (DNA) repair, depletion of the coenzyme nicotinamide adenine dinucleotide (NAD+), and altered methionine and homocysteine metabolism. The theory of oxidative phosphorylation attributes mitochondrial adenosine triphosphate (ATP) synthesis to the active site, thioretinaco ozonide oxygen NAD+ phosphate, which couples polymerization of NAD+ and phosphate to ATP produced by reduction of oxygen by electrons derived from foods. Loss of the thioretinaco ozonide oxygen ATP complex from the opening of the mitochondrial permeability transition pore (mPTP) is proposed to explain the abnormalities of oxidative metabolism occurring in cellular aging and carcinogenesis, thereby uniting the free radical and neuroendocrine theories of aging. Cellular senescence is associated with shortening of telomeres and decreased activity of telomerase, and exposure of cultured endothelial cells to homocysteine causes cellular senescence, shortened telomeres, and increased acidic ß-galactosidase, a marker of cellular senescence. The decrease in telomerase with aging is related to decreased nitric oxide production by nitric oxide synthase. The pathogenic microbes occurring in atherosclerotic plaques and in cerebral plaques in dementia inhibit nitric oxide synthesis by up-regulation of polyamine biosynthesis from adenosyl methionine and putrescene, causing the hyperhomocysteinemia and suppressed immunity that is observed in atherosclerosis and dementia. Progressive mitochondrial dysfunction occurs in aging because of loss of the thioretinaco ozonide oxygen ATP complex from mitochondrial membranes by opening of the mitochondrial permeability transition pore. Melatonin, a neuro-hormone, and cycloastragenol, a telomerase activator, both prevent mitochondrial dysfunction by inhibition of mPTP pore opening. The carcinogenic effects of radiofrequency radiation and mycotoxins are attributed to loss of thioretinaco ozonide from opening of the mPTP and decomposition of the active site of oxidative phosphorylation. The anti-aging effects of retinoids, the decreased concentration of cerebral cobalamin coenzymes in aging, and the diminished concentration of NAD+ from sirtuin activation, as observed in aging, all support the concept of loss of the thioretinaco ozonide oxygen ATP active site from mitochondria as the cause of decreased oxidative phosphorylation and mitochondrial dysfunction in aging.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Homocisteína/metabolismo , Mitocôndrias/fisiologia , Animais , Aterosclerose/metabolismo , Cálcio/metabolismo , Demência/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Poro de Transição de Permeabilidade Mitocondrial , NAD/metabolismo , Óxido Nítrico/biossíntese , Fosforilação Oxidativa , Telômero
6.
Ann Clin Lab Sci ; 46(6): 701-704, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27993887

RESUMO

The formation of phosphoadenosine phosphosulfate (PAPS) is accomplished by the action of the enzyme 3'-phosphoadenosine 5'-phosphosulfate synthase (PAPSS) in two sequential reactions, consisting of (1) reaction of inorganic sulfate with adenosine triphosphate (ATP) to form adenosine phosphosulfate (APS) and pyrophosphate and (2) reaction of APS with inorganic phosphate to form PAPS and adenosine diphosphate (ADP). The hydrolysis of guanosine triphosphate (GTP) is coordinated with synthesis of APS in a reaction sequence which provides the chemical energy for synthesis of APS. The present proposal is that the active site of oxidative phosphorylation, thioretinaco ozonide oxygen (TR2CoO3O2), functions as the source of APS synthesis from nicotinamide adenine dinucleotide (NAD+) and hydrosulfate (HSO4-) by reduction of the complex with electrons from electron transport complexes, releasing APS and thioretinaco hydroperoxide (TR2CoO3O2H) upon protonation. Subsequently, APS reacts with GTP, which is produced from the active site of oxidative phosphorylation, TR2CoO3O2ATP, to phosphorylate APS to PAPS. These proposed reactions for PAPS synthesis in atherosclerosis explain the metabolic pathway for formation of PAPS from homocysteine through the intermediate formation of thioretinamide (TR) and explain how hyperhomocysteinemia stimulates production of sulfated glycosaminoglycans (GAG), which are essential components of atherosclerotic plaques.


Assuntos
Aterosclerose/metabolismo , Homocisteína/análogos & derivados , Fosforilação Oxidativa , Fosfoadenosina Fosfossulfato/metabolismo , Vitamina B 12/análogos & derivados , Animais , Aterosclerose/patologia , Cobaias , Homocisteína/metabolismo , Humanos , Oxirredução , Vitamina B 12/metabolismo
7.
Expert Rev Clin Pharmacol ; 8(2): 211-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25653125

RESUMO

The homocysteine theory of arteriosclerosis was discovered by study of arteriosclerotic plaques occurring in homocystinuria, a disease caused by deficiencies of cystathionine synthase, methionine synthase or methylenetetrahydrofolate reductase. According to the homocysteine theory, metabolic and nutritional abnormalities leading to elevation of plasma homocysteine cause atherosclerosis in the general population without these rare enzymatic abnormalities. Through studies of metabolism of homocysteine thiolactone, the anhydride of homocysteine, in cell cultures from homocystinuric children, the pathway for synthesis of sulfate was found to be dependent upon thioretinamide, the amide formed from retinoic acid and homocysteine thiolactone. Two molecules of thioretinamide form the complex thioretinaco with cobalamin, and oxidative phosphorylation is catalyzed by reduction of oxygen, which is bound to thioretinaco ozonide, by electrons from electron transport particles. Atherogenesis is attributed to formation of aggregates of homocysteinylated lipoproteins with microorganisms, which obstruct the vasa vasorum during formation of arterial vulnerable plaques.


Assuntos
Aterosclerose/fisiopatologia , Homocisteína/metabolismo , Placa Aterosclerótica/patologia , Animais , Homocisteína/sangue , Homocistinúria/complicações , Homocistinúria/fisiopatologia , Humanos , Lipoproteínas/metabolismo , Estresse Oxidativo/fisiologia
8.
Ann Clin Lab Sci ; 45(2): 222-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25887881

RESUMO

The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism.


Assuntos
Envelhecimento/patologia , Domínio Catalítico , Demência/patologia , Hiper-Homocisteinemia/metabolismo , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Restrição Calórica , Humanos , NAD/metabolismo , Sirtuínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA