Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34949715

RESUMO

Dormancy is an evolutionarily conserved protective mechanism widely observed in nature. A pathological example is found during cancer metastasis, where cancer cells disseminate from the primary tumor, home to secondary organs, and enter a growth-arrested state, which could last for decades. Recent studies have pointed toward the microenvironment being heavily involved in inducing, preserving, or ceasing this dormant state, with a strong focus on identifying specific molecular mechanisms and signaling pathways. Increasing evidence now suggests the existence of an interplay between intracellular as well as extracellular biochemical and mechanical cues in guiding such processes. Despite the inherent complexities associated with dormancy, proliferation, and growth of cancer cells and tumor tissues, viewing these phenomena from a physical perspective allows for a more global description, independent from many details of the systems. Building on the analogies between tissues and fluids and thermodynamic phase separation concepts, we classify a number of proposed mechanisms in terms of a thermodynamic metastability of the tumor with respect to growth. This can be governed by interaction with the microenvironment in the form of adherence (wetting) to a substrate or by mechanical confinement of the surrounding extracellular matrix. By drawing parallels with clinical and experimental data, we advance the notion that the local energy minima, or metastable states, emerging in the tissue droplet growth kinetics can be associated with a dormant state. Despite its simplicity, the provided framework captures several aspects associated with cancer dormancy and tumor growth.


Assuntos
Matriz Extracelular/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Matriz Extracelular/patologia , Humanos , Metástase Neoplásica , Neoplasias/patologia , Transdução de Sinais
2.
J Cell Physiol ; : e31390, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39104040

RESUMO

Chronic rhinosinusitis without nasal polyp (CRSsNP) is characterized by tissue repair/remodeling and the subepithelial stroma region in whose nasal mucosa has been reported by us to have thromboxane A2 (TXA2) prostanoid (TP) receptor and overexpress connective tissue growth factor (CTGF). Therefore, this study aimed to investigate the relationship between TP receptor activation and CTGF production/function in human CRSsNP nasal mucosa stromal fibroblasts. We found that TP agonists including U46619 and IBOP ([1S-[1α,2α(Z),3ß(1E,3 S*),4α]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid) could promote CTGF protein/messenger RNA expression and secretion. The pharmacological intervention and TP activation assay with U46619 identified the possible participation of PKCµ, PKCδ, nuclear factor-κB (NF-κB), and cyclic AMP response element-binding protein (CREB) phosphorylation/activation in the CTGF induction. Moreover, a phorbol ester-phorbol-12-myristate 13-acetate (PMA) exhibited a similar cellular signaling and CTGF production profile to that elicited by TP activation. However, further small interfering RNA interference analysis revealed that only NF-κB and PKCδ-CREB pathways were necessarily required for TP-mediated CTGF production, which could not be completely supported by those findings from PMA. Finally, in a functional assay, although CTGF did not affect fibroblast proliferation, TP-mediated CTGF could drive novel self-migration in fibroblasts both in the scratch/wound healing and transwell apparatus assays. Meanwhile, the overall staining for stress fibers and formation of the lamellipodia and filopodia-like structures was concomitantly increased in the treated migrating cells. Collectively, we provided here that novel TP mediates CTGF production and self-migration in human nasal fibroblasts through NF-κB and PKCδ-CREB signaling pathways. More importantly, we also demonstrated that thromboxane, TP receptor, CTGF, and stromal fibroblasts may act in concert in the tissue remodeling/repair process during CRSsNP development and progression.

3.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G295-G305, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954823

RESUMO

Crohn's disease (CD) is an inflammatory bowel disease characterized by transmural inflammation and intestinal fibrosis. Mechanisms of fibrosis in CD are not well understood. Transmural inflammation is associated with inflammatory cell infiltration, stenosis, and distention, which present mechanical stress (MS) to the bowel wall. We hypothesize that MS induces gene expression of profibrotic mediators such as connective tissue growth factor (CTGF), which may contribute to fibrosis in CD. A rodent model of CD was induced by intracolonic instillation of TNBS to the distal colon. TNBS instillation induced a localized transmural inflammation (site I), with a distended colon segment (site P) proximal to site I. We detected significant fibrosis and collagen content not only in site I but also in site P in CD rats by day 7. CTGF expression increased significantly in sites P and I, but not in the segment distal to the inflammation site. Increased CTGF expression was detected mainly in the smooth muscle cells (SMCs). When rats were fed exclusively with clear liquid diet to prevent mechanical distention in colitis, expression of CTGF in sites P and I was blocked. Direct stretch led to robust expression of CTGF in colonic SMC. Treatment of CD rats with anti-CTGF antibody FG-3149 reduced fibrosis and collagen content in both sites P and I and exhibited consistent trends toward normalizing expression of collagen mRNAs. In conclusion, our studies suggest that mechanical stress, by upregulating profibrotic mediators, i.e., CTGF, may play a critical role in fibrosis in CD.NEW & NOTEWORTHY We found that CTGF expression increased significantly not only in the inflammation site but in the distended segment proximal to inflammation in a rodent model of CD-like colitis. Release of mechanical distention prevented CTGF expression in CD rats, whereas direct stretch induced CTGF expression. Treatment with anti-CTGF antibody reduced fibrosis and collagen contents in CD rats. Thus, mechanical stress, via upregulating profibrotic mediators, i.e., CTGF, may play a critical role in fibrosis in CD.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Doença de Crohn , Fibrose , Ratos Sprague-Dawley , Estresse Mecânico , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Ratos , Masculino , Colite/metabolismo , Colite/induzido quimicamente , Colite/patologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Ácido Trinitrobenzenossulfônico , Colágeno/metabolismo
4.
Development ; 148(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34313318

RESUMO

Heterozygosity of ribosomal protein genes causes a variety of developmental abnormalities in humans, which are collectively known as ribosomopathies, yet the underlying mechanisms remain elusive. Here, we analyzed Drosophila Minute (M)/+ mutants, a group of mutants heterozygous for ribosomal protein genes that exhibit a characteristic thin-bristle phenotype. We found that, although M/+ flies develop essentially normal wings, simultaneous deletion of one copy of the Hippo pathway effector yki resulted in severe wing growth defects. These defects were caused by JNK-mediated cell death in the wing pouch via Eiger/TNF signaling. The JNK activation in M/+, yki/+ wing discs required the caspase Dronc, which is normally blocked by DIAP1. Notably, heterozygosity of yki reduced DIAP1 expression in the wing pouch, leading to elevation of Dronc activity. Dronc and JNK formed a positive-feedback loop that amplifies Dronc activation, leading to apoptosis. Our observations suggest a mechanism of robust tissue growth whereby tissues with reduced ribosomal protein prevent ectopic apoptosis via Yki activity.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Animais , Apoptose , Morte Celular , Regulação para Baixo , Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais , Transativadores/genética , Asas de Animais/anatomia & histologia , Asas de Animais/metabolismo , Proteínas de Sinalização YAP
5.
Cytokine ; 174: 156460, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38134555

RESUMO

OBJECTIVE: Connective tissue growth factor (CTGF) exhibits potent proliferative, differentiated, and mineralizing effects, and is believed to be contribute to cartilage mineralization in Osteoarthritis (OA). However, the underlying mechanism of chondrocyte mineralization induced by CTGF remains obscure. As a key regulator of mineral responses, type III phosphate transporter 1 (Pit-1) has been associated with the pathogenesis of articular mineralization. Therefore, the primary objective of this study was to investigate whether CTGF influences the development of mature chondrocyte mineralization and the underlying mechanisms governing such mineralization. METHODS: The effect of Connective tissue growth factor (CTGF) on human C-28/I2 chondrocytes were investigated. The chondrocytes were treated with CTGF or related inhibitors, and transfected with Overexpression and siRNA transfection of Type III Phosphate Transporter 1(Pit-1). Subsequently, the cells were subjected to Alizarin red S staining, PiPer Phosphate Assay Kit, Alkaline Phosphatase Diethanolamine Activity Kit, ELISA, RT-PCR or Western blot analysis. RESULTS: Stimulation with Connective tissue growth factor (CTGF) significantly upregulated the expression of the Type III Phosphate Transporter 1(Pit-1) and mineralization levels in chondrocytes through activation of α5ß1 integrin and BMP/Samd1/5/8 signaling pathways. Furthermore, treatment with overexpressed Pit-1 markedly increased the expression of Multipass Transmembrane Ankylosis (ANK) transporter in the cells. The inhibitory effect of CTGF receptor blockade using α5ß1 Integrin blocking antibody was demonstrated by significantly suppressed the expression of Pit-1 and ANK transporter, as well as chondrocyte mineralization. CONCLUSIONS: Our data indicate that Connective tissue growth factor (CTGF) plays a critical role inchondrocyte mineralization, which is dependent on the expression of the Type III Phosphate Transporter 1(Pit-1) and Multipass Transmembrane Ankylosis (ANK) transporter. Consequently, inhibition of CTGF activity may represent a novel therapeutic approach for the management of Osteoarthritis (OA).


Assuntos
Anquilose , Calcinose , Osteoartrite , Humanos , Anquilose/metabolismo , Anquilose/patologia , Calcinose/patologia , Células Cultivadas , Condrócitos/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Integrinas/metabolismo , Osteoartrite/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo
6.
FASEB J ; 37(4): e22878, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36939278

RESUMO

Retinal fibrosis is a severe pathological change in the late stage of diabetic retinopathy and is also the leading cause of blindness. We have previously revealed that N-cadherin was significantly increased in type 1 and type 2 diabetic mice retinas and the fibrovascular membranes from proliferative diabetic retinopathy (PDR) patients. However, whether N-cadherin directly induces retinal fibrosis in DR and the related mechanism is unknown. Here, we investigated the pathogenic role of N-cadherin in mediating retinal fibrosis and further explored the relevant therapeutic targets. We found that the level of N-cadherin was significantly increased in PDR patients and STZ-induced diabetic mice and positively correlated with the fibrotic molecules Connective Tissue Growth Factor (CTGF) and fibronectin (FN). Moreover, intravitreal injection of N-cadherin adenovirus significantly increased the expression of FN and CTGF in normal mice retinas. Mechanistically, overexpression of N-cadherin promotes N-cadherin cleavage, and N-cadherin cleavage can further induce translocation of non-p-ß-catenin in the nucleus and upregulation of fibrotic molecules. Furthermore, we found a novel N-cadherin cleavage inhibitor, pigment epithelial-derived factor (PEDF), which ameliorated the N-cadherin cleavage and subsequent retinal fibrosis in diabetic mice. Thus, our findings provide novel evidence that elevated N-cadherin level not only acts as a classic EMT maker but also plays a causative role in diabetic retinal fibrosis, and targeting N-cadherin cleavage may provide a strategy to inhibit retinal fibrosis in DR patients.


Assuntos
Caderinas , Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Caderinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Fibrose
7.
Cell Commun Signal ; 22(1): 8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167009

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME) that play an important role in cancer progression. Although the mechanism by which CAFs promote tumorigenesis has been well investigated, the underlying mechanism of CAFs activation by neighboring cancer cells remains elusive. In this study, we aim to investigate the signaling pathways involved in CAFs activation by gastric cancer cells (GC) and to provide insights into the therapeutic targeting of CAFs for overcoming GC. METHODS: Alteration of receptor tyrosine kinase (RTK) activity in CAFs was analyzed using phospho-RTK array. The expression of CAFs effector genes was determined by RT-qPCR or ELISA. The migration and invasion of GC cells co-cultured with CAFs were examined by transwell migration/invasion assay. RESULTS: We found that conditioned media (CM) from GC cells could activate multiple receptor tyrosine kinase signaling pathways, including ERK, AKT, and STAT3. Phospho-RTK array analysis showed that CM from GC cells activated PDGFR tyrosine phosphorylation, but only AKT activation was PDGFR-dependent. Furthermore, we found that connective tissue growth factor (CTGF), a member of the CCN family, was the most pronouncedly induced CAFs effector gene by GC cells. Knockdown of CTGF impaired the ability of CAFs to promote GC cell migration and invasion. Although the PDGFR-AKT pathway was pronouncedly activated in CAFs stimulated by GC cells, its pharmacological inhibition affected neither CTGF induction nor CAFs-induced GC cell migration. Unexpectedly, the knockdown of SRC and SRC-family kinase inhibitors, dasatinib and saracatinib, significantly impaired CTGF induction in activated CAFs and the migration of GC cells co-cultured with CAFs. SRC inhibitors restored the reduced expression of epithelial markers, E-cadherin and Zonula Occludens-1 (ZO-1), in GC cells co-cultured with CAFs, as well as CAFs-induced aggregate formation in a 3D tumor spheroid model. CONCLUSIONS: This study provides a characterization of the signaling pathways and effector genes involved in CAFs activation, and strategies that could effectively inhibit it in the context of GC. Video Abstract.


Assuntos
Fibroblastos Associados a Câncer , Fator de Crescimento do Tecido Conjuntivo , Neoplasias Gástricas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Microambiente Tumoral
8.
BMC Med Imaging ; 24(1): 173, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997649

RESUMO

BACKGROUND: This study aims to investigate the role of shear wave elastography (SWE) and connective tissue growth factor (CTGF) in the assessment of papillary thyroid carcinoma (PTC) prognosis. METHODS: CTGF expression was detected with immunohistochemistry. Clinical and pathological data were collected. Parameters of conventional ultrasound combined with SWE were also collected. The relationship among CTGF expression, ultrasound indicators, the elastic modulus and the clinicopathological parameters were analyzed. RESULTS: Univariate analysis showed that patients with high risk of PTC were characterized with male, Uygur ethnicity, increased expression of CTGF, convex lesions, calcified, incomplete capsule, intranodular blood flow, rear echo attenuation, cervical lymph node metastasis, lesions larger than 1 cm, psammoma bodies, advanced clinical stage, increased TSH and high value in the shear modulus (P < 0.05). Multivariate analysis demonstrated that the risk factors of high expression of CTGF according to contribution size order were irregular shape, aspect ratio ≥ 1, and increased TSH. The logistic regression model equation was Logit (P) = 1.153 + 1.055 × 1 + 0.926 × 2 + 1.190 × 3 and the Area Under Curve value of the logistic regression was calculated to be 0.850, with a 95% confidence interval of 0.817 to 0.883. CONCLUSION: SWE and CTGF are of great value in the risk assessment of PTC. The degree of fibrosis of PTC is closely related to the prognosis. The hardness of PTC lesions and the expression level of CTGF are correlated with the main indexes of conventional ultrasound differentiating benign or malignant nodules. Irregular shape, aspect ratio ≥ 1, and increased TSH are independent factors of CTGF.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Técnicas de Imagem por Elasticidade , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Ultrassonografia Doppler em Cores , Humanos , Masculino , Técnicas de Imagem por Elasticidade/métodos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Feminino , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Pessoa de Meia-Idade , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Medição de Risco , Adulto , Prognóstico , Idoso , Módulo de Elasticidade , Fatores de Risco
9.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33947815

RESUMO

We use a theoretical approach to examine the effect of a radial fluid flow or electric current on the growth and homeostasis of a cell spheroid. Such conditions may be generated by a drain of micrometric diameter. To perform this analysis, we describe the tissue as a continuum. We include active mechanical, electric, and hydraulic components in the tissue material properties. We consider a spherical geometry and study the effect of the drain on the dynamics of the cell aggregate. We show that a steady fluid flow or electric current imposed by the drain could be able to significantly change the spheroid long-time state. In particular, our work suggests that a growing spheroid can systematically be driven to a shrinking state if an appropriate external field is applied. Order-of-magnitude estimates suggest that such fields are of the order of the indigenous ones. Similarities and differences with the case of tumors and embryo development are briefly discussed.


Assuntos
Biofísica , Esferoides Celulares/química , Animais , Humanos , Modelos Biológicos , Neoplasias
10.
Artigo em Chinês | MEDLINE | ID: mdl-38964903

RESUMO

Objective: To investigate the role of connective tissue growth factor (CTGF) and PI3K/Akt signaling pathways in paraquat (PQ) -induced alterations in alveolar epithelial cell mesenchymalization (EMT) . Methods: In February 2023, RLE-6TN cells were divided into 2 groups, which were set as uncontaminated group and contaminated group (200 µmol/L PQ), and cellular EMT alteration, CTGF and PI3K/Akt signaling pathway related molecules expression were detected by cell scratch assay, qRT-PCR and western-blot assay. Using shRNA interference technology to specifically inhibit the expression of CTGF, RLE-6TN cells were divided into four groups: control group, PQ group (200 µmol/L PQ), interference group (transfected with a plasmid with shRNA-CTGF+200 µmol/L PQ), and null-loaded group (transfected with a plasmid with scramble- CTGF+200 µmol/L PQ), qRT-PCR and western blot were used to examine the alteration of the cellular EMT and the expression of molecules related to the activity of PI3K/Akt pathway. The PI3K/Akt signaling pathway was blocked by the PI3K inhibitor LY294002, and the expression of EMT-related molecules in cells of the control group, PQ group (200 µmol/L PQ), and inhibitor group (200 µmol/L PQ+20 µmol/L LY294002) was examined by qRT-PCR and western blot.The t-test was used to compare the differences between the two groups, while the analysis of variance (ANOVA) was applied to compare the differences among multiple groups. For further pairwise comparisons, the Bonferroni method was adopted. Results: The results of cell scratch test showed that compared with the uncontaminated group, RLE-6TN cells in the contaminated group had faster migration rate, lower mRNA and protein expression levels of E-Cadherin, and higher mRNA and protein expression levels of α-SMA, CTGF, PI3K and Akt, with statistical significance (P<0.05). After specific inhibition of CTGF expression, the mRNA and protein expression of CTGF, PI3K, Akt, and α-SMA in the cells of the interference group were significantly lower than that of the PQ group and the null-loaded group (P<0.05/6), whereas that of E-Cadherin was higher than that of the PQ group and the null-loaded group (P<0.05/6). Specifically blocking the PI3K/Akt signaling pathway, the mRNA and protein expression of PI3K, Akt and α-SMA in the cells of the inhibitor group was decreased compared with that of the PQ group (P<0.05/3), while the expression of E-Cadherin was elevated compared with that of the PQ group (P<0.05/3) . Conclusion: CTGF may promote PQ-induced alveolar epithelial cell EMT through activation of the PI3K/Akt signaling pathway. Inhibition of CTGF expression or blockade of PI3K/Akt signaling pathway activity can alleviate the extent of PQ-induced alveolar epithelial cell EMT.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Transição Epitelial-Mesenquimal , Paraquat , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Paraquat/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Ratos , Linhagem Celular , Morfolinas/farmacologia , Cromonas/farmacologia , Caderinas/metabolismo
11.
Respir Res ; 24(1): 227, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741976

RESUMO

BACKGROUND: Functional alveolar regeneration is essential for the restoration of normal lung homeostasis after acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Lung is a relatively quiescent organ and a variety of stem cells are recruited to participate in lung repair and regeneration after lung tissue injury. However, there is still no effective method for promoting the proliferation of endogenous lung stem cells to promote repair and regeneration. METHODS: Using protein mass spectrometry analysis, we analyzed the microenvironment after acute lung injury. RNA sequencing and image cytometry were used in the alveolar epithelial type 2 cells (AEC2s) subgroup identification. Then we used Sftpc+AEC2 lineage tracking mice and purified AEC2s to further elucidate the molecular mechanism by which CTGF regulates AEC2s proliferation both in vitro and in vivo. Bronchoalveolar lavage fluid (BALF) from thirty ARDS patients who underwent bronchoalveolar lavage was collected for the analysis of the correlation between the expressing of Krt5 in BALF and patients' prognosis. RESULTS: Here, we elucidate that AEC2s are the main facultative stem cells of the distal lung after ALI and ARDS. The increase of connective tissue growth factor (CTGF) in the microenvironment after ALI promoted the proliferation of AEC2s subpopulations. Proliferated AEC2s rapidly expanded and differentiated into alveolar epithelial type 1 cells (AEC1s) in the regeneration after ALI. CTGF initiates the phosphorylation of LRP6 by promoting the interaction between Krt5 and LRP6 of AEC2s, thus activating the Wnt signaling pathway, which is the molecular mechanism of CTGF promoting the proliferation of AEC2s subpopulation. CONCLUSIONS: Our study verifies that CTGF promotes the repair and regeneration of alveoli after acute lung injury by promoting the proliferation of AEC2s subpopulation.


Assuntos
Lesão Pulmonar Aguda , Fator de Crescimento do Tecido Conjuntivo , Síndrome do Desconforto Respiratório , Animais , Humanos , Camundongos , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Alvéolos Pulmonares , Regeneração
12.
J Muscle Res Cell Motil ; 44(2): 95-106, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36316565

RESUMO

Non-traditional animal models present an opportunity to discover novel biology that has evolved to allow such animals to survive in extreme environments. One striking example is the Burmese python (Python molurus bivittatus), which exhibits extreme physiological adaptation in various metabolic organs after consuming a large meal following long periods of fasting. The response to such a large meal in pythons involves a dramatic surge in metabolic rate, lipid overload in plasma, and massive but reversible organ growth through the course of digestion. Multiple studies have reported the physiological responses in post-prandial pythons, while the specific molecular control of these processes is less well-studied. Investigating the mechanisms that coordinate organ growth and adaptive responses offers the opportunity to gain novel insight that may be able to treat various pathologies in humans. Here, we summarize past research on the post-prandial physiological changes in the Burmese python with a focus on the gastrointestinal tract, heart, and liver. Specifically, we address our recent molecular discoveries in the post-prandial python liver which demonstrate transient adaptations that may reveal new therapeutic targets. Lastly, we explore new biology of the aquaporin 7 gene that is potently upregulated in mammalian cardiac myocytes by circulating factors in post-prandial python plasma.


Assuntos
Boidae , Período Pós-Prandial , Animais , Boidae/genética , Boidae/metabolismo , Boidae/fisiologia , Mamíferos , Mianmar , Período Pós-Prandial/fisiologia
13.
Nephrol Dial Transplant ; 38(3): 599-609, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35945682

RESUMO

BACKGROUND: Common genetic variants of the enzymes and efflux pump involved in tacrolimus disposition have been associated with calcineurin inhibitor nephrotoxicity, but their importance is unclear because of the multifactorial background of renal fibrosis. This study explores the pro-fibrotic response of tacrolimus exposure in relation to the differential capacity for tacrolimus metabolism in proximal tubule cells (PTCs) with a variable (pharmaco)genetic background. METHODS: PTCs were obtained from protocol allograft biopsies with different combinations of CYP3A5 and ABCB1 variants and were incubated with tacrolimus within the concentration range found in vivo. Gene and protein expression, CYP3A5 and P-glycoprotein function, and tacrolimus metabolites were measured in PTC. Connective tissue growth factor (CTGF) expression was assessed in protocol biopsies of kidney allograft recipients. RESULTS: PTCs produce CTGF in response to escalating tacrolimus exposure, which is approximately 2-fold higher in cells with the CYP3A5*1 and ABCB1 TT combination in vitro. Increasing tacrolimus exposure results in relative higher generation of the main tacrolimus metabolite {13-O-desmethyl tacrolimus [M1]} in cells with this same genetic background. Protocol biopsies show a larger increase in in vivo CTGF tissue expression over time in TT vs. CC/CT but was not affected by the CYP3A5 genotype. CONCLUSIONS: Tacrolimus exposure induces a pro-fibrotic response in a PTC model in function of the donor pharmacogenetic background associated with tacrolimus metabolism. This finding provides a mechanistic insight into the nephrotoxicity associated with tacrolimus treatment and offers opportunities for a tailored immunosuppressive treatment.


Assuntos
Nefropatias , Transplante de Rim , Humanos , Tacrolimo , Citocromo P-450 CYP3A/genética , Imunossupressores/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
14.
Circ J ; 87(4): 527-535, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36843115

RESUMO

BACKGROUND: Connective tissue growth factor (CTGF) has diagnostic value for pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD) in children; however, its value in adult patients remains unclear. This study evaluated CTGF as a biomarker in adult PAH-CHD patients.Methods and Results: Based on mean pulmonary artery pressure (mPAP), 56 CHD patients were divided into 3 groups: without PAH (W; mPAP <25 mmHg; n=28); mild PAH (M; mPAP 25-35 mmHg; n=18); and moderate and severe PAH (H; mPAP ≥35 mmHg; n=10). The control group consisted of 28 healthy adults. Plasma CTGF and B-type natriuretic peptide (BNP) concentrations were determined. Plasma CTGF concentrations were higher in the H and M groups than in the W and control groups, and were higher in the H than M group. Plasma CTGF concentrations were positively correlated with pulmonary artery systolic pressure (PASP), mPAP, and pulmonary vascular resistance, and negatively correlated with mixed venous oxygen saturation. CTGF, BNP, red blood cell distribution width, and World Health Organization Class III/IV were risk factors for PAH in CHD patients, and CTGF was an independent risk factor for PAH-CHD. The efficacy of CTGF in the diagnosis of PAH was not inferior to that of BNP. CONCLUSIONS: CTGF is a biomarker of PAH associated with CHD. It can be used for early diagnosis and severity assessment in adult patients with CHD-PAH.


Assuntos
Cardiopatias Congênitas , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Criança , Humanos , Adulto , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/etiologia , Fator de Crescimento do Tecido Conjuntivo , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar Primária Familiar/complicações , Biomarcadores , Peptídeo Natriurético Encefálico
15.
Bull Math Biol ; 85(11): 111, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37805982

RESUMO

Coordination of cell behaviour is key to a myriad of biological processes including tissue morphogenesis, wound healing, and tumour growth. As such, individual-based computational models, which explicitly describe inter-cellular interactions, are commonly used to model collective cell dynamics. However, when using individual-based models, it is unclear how descriptions of cell boundaries affect overall population dynamics. In order to investigate this we define three cell boundary descriptions of varying complexities for each of three widely used off-lattice individual-based models: overlapping spheres, Voronoi tessellation, and vertex models. We apply our models to multiple biological scenarios to investigate how cell boundary description can influence tissue-scale behaviour. We find that the Voronoi tessellation model is most sensitive to changes in the cell boundary description with basic models being inappropriate in many cases. The timescale of tissue evolution when using an overlapping spheres model is coupled to the boundary description. The vertex model is demonstrated to be the most stable to changes in boundary description, though still exhibits timescale sensitivity. When using individual-based computational models one should carefully consider how cell boundaries are defined. To inform future work, we provide an exploration of common individual-based models and cell boundary descriptions in frequently studied biological scenarios and discuss their benefits and disadvantages.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Software , Comunicação Celular , Morfogênese
16.
Graefes Arch Clin Exp Ophthalmol ; 261(10): 2845-2851, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37162563

RESUMO

PURPOSE: To investigate the relationship between clinical features and protein amounts of Cysteine-rich 61 (Cyr61/CCN1) and connective tissue growth factor (CTGF/CCN2), which are vital components and regulators of the extracellular matrix in resected muscles from strabismus surgery. METHODS: Strabismus patients who were diagnosed with horizontal concomitant strabismus or inferior oblique overaction (IOOA) and required extraocular muscles (EOMs) resection to correct eye position were included in this study. The protein amounts were measured by enzyme-linked immunosorbent assay (ELISA) in resected EOMs. Multivariable linear regression was used to investigate the associations, adjusting for gender, age (continuous), amblyopia, and disease duration. RESULTS: A total of 141 muscles (including 38 lateral, 81 medial rectus, and 22 inferior oblique muscles) from 128 patients were collected in this study. The amount of Cry61 and CTGF per millimeter was significantly negatively associated with deviation angle in intermittent exotropia patients (Cry61: ß, - 1.44; 95%CI, - 2.79 to - 0.10, p = 0.035; CTGF: ß, - 3.14; 95%CI, - 5.06 to - 1.22, p = 0.002). The same relationship was also detected in the partially accommodative and non-accommodative esotropia patients, although it was not statistically significant (Cry61: ß, - 2.40; 95%CI, - 5.05 to 0.24; p = 0.073; CTGF: ß, - 3.47; 95%CI, - 9.18 to 2.87; p = 0.269). The amount of Cry61 and CTGF per millimeter showed significant associations with the degree of IOOA (p < 0.05). CONCLUSIONS: Taken together, our results demonstrated a significant relationship between deviation angle and protein amount of Cry61 and CTGF and implied that Cry61 and CTGF may play important roles in modulation of EOM contractility, which provide new insights into strabismus pathogenesis.


Assuntos
Exotropia , Doenças Orbitárias , Estrabismo , Humanos , Músculos Oculomotores/cirurgia , Músculos Oculomotores/patologia , Relevância Clínica , Fator de Crescimento do Tecido Conjuntivo , Estrabismo/cirurgia , Estrabismo/diagnóstico
17.
Toxicol Ind Health ; 39(12): 712-734, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871157

RESUMO

Green synthesis of silver nanoparticles (AgNPs) from aqueous silver nitrate has been achieved using an extract of Ferula communis leaf as a capping, reducing, and stabilizing agent. The formation and stability of the green synthesized silver nanoparticles in the colloidal solution were monitored by absorption measurements. Silver nanoparticles were characterized by different analyses such as X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and FT-IR spectroscopy. The average particle size of silver nanoparticles was determined by high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) analyses. In this experiment, pregnant female mice were divided into four groups (G); G1 was the control and received phosphate-buffered saline, G2 received orally aqueous extract of F. communis leaf, G3 received orally AgNPs chemically prepared by NaBH4, and G4 received orally AgNPs prepared by aqueous extract of F. communis leaf. The diameter of AgNPs was 20 nm. AgNPs exhibited good catalytic reduction ability toward methyl orange in the presence of sodium borohydride with a rate constant of 2.95 x 10-4 s-1. The results revealed the occurrence of resorbed embryos in G2, G3, and G4 with different percentages. The livers of mothers and embryos at E14.5 in G2, G3, and G4 showed different levels of histopathological alteration and increase in GFAP and CTGF expressions compared with the control group. The study concluded that the oral administration of small-sized AgNPs (20 nm) prepared by Ferula extract had less toxicity than those prepared by the chemical method.


Assuntos
Ferula , Nanopartículas Metálicas , Feminino , Humanos , Camundongos , Animais , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Exposição Materna , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Prata/toxicidade , Difração de Raios X , Antibacterianos
18.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108352

RESUMO

The identification of tissue-specific promoters for gene therapeutic constructs is one of the aims of complex tumor therapy. The genes encoding the fibroblast activation protein (FAP) and the connective tissue growth factor (CTGF) can function in tumor-associated stromal cells but are practically inactive in normal adult cells. Accordingly, the promoters of these genes can be used to develop vectors targeted to the tumor microenvironment. However, the efficiency of these promoters within genetic constructs remains underexplored, particularly, at the organism level. Here, we used the model of Danio rerio embryos to study the efficiency of transient expression of marker genes under the control of promoters of the FAP, CTGF, and immediate early genes of Human cytomegalovirus (CMV). Within 96 h after the injection of vectors, the CTGF and CMV promoters provided similar equal efficiency of reporter protein accumulation. In the case of the FAP promoter, a high level of reporter protein accumulation was observed only in certain zebrafish individuals that were considered developmentally abnormal. Disturbed embryogenesis was the factor of changes in the exogenous FAP promoter function. The data obtained make a significant contribution to understanding the function of the human CTGF and FAP promoters within vectors to assess their potential in gene therapy.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Infecções por Citomegalovirus , Adulto , Animais , Humanos , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Infecções por Citomegalovirus/genética , Regiões Promotoras Genéticas , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003505

RESUMO

Triple-negative breast cancer (TNBC) is characterized by aggressive behavior and limited treatment options, necessitating the identification of novel therapeutic targets. In this study, we investigated the clinical significance of connective tissue growth factor (CTGF) as a prognostic marker and explored the potential therapeutic effects of kahweol, a coffee diterpene molecule, in TNBC treatment. Initially, through a survival analysis on breast cancer patients from The Cancer Genome Atlas (TCGA) database, we found that CTGF exhibited significant prognostic effects exclusively in TNBC patients. To gain mechanistic insights, we performed the functional annotation and gene set enrichment analyses, revealing the involvement of CTGF in migratory pathways relevant to TNBC treatment. Subsequently, in vitro experiments using MDA-MB 231 cells, a representative TNBC cell line, demonstrated that recombinant CTGF (rCTGF) administration enhanced cell motility, whereas CTGF knockdown using CTGF siRNA resulted in reduced motility. Notably, rCTGF restored kahweol-reduced cell motility, providing compelling evidence for the role of CTGF in mediating kahweol's effects. At the molecular level, kahweol downregulated the protein expression of CTGF as well as critical signaling molecules, such as p-ERK, p-P38, p-PI3K/AKT, and p-FAK, associated with cell motility. In summary, our findings propose CTGF as a potential prognostic marker for guiding TNBC treatment and suggest kahweol as a promising antitumor compound capable of regulating CTGF expression to suppress cell motility in TNBC. These insights hold promise for the development of targeted therapies and improved clinical outcomes for TNBC patients.


Assuntos
Diterpenos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Preparações Farmacêuticas , Fosfatidilinositol 3-Quinases/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células
20.
Am J Respir Cell Mol Biol ; 66(3): 260-270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34797990

RESUMO

Idiopathic pulmonary fibrosis is a fatal lung disease characterized by progressive and excessive accumulation of myofibroblasts and in the lung. Connective-tissue growth factor (CTGF) exacerbates pulmonary fibrosis in radiation-induced lung fibrosis, and in this study, we demonstrate upregulation of CTGF in a rat lung fibrosis model induced by an adenovirus vector encoding active TGF-ß1 (AdTGF-ß1). We show that CTGF is also upregulated in patients with idiopathic pulmonary fibrosis. Expression of CTGF was upregulated in vascular smooth muscle cells cultured from fibrotic lungs on Days 7 and 14 as well as endothelial cells sorted from fibrotic lungs on Days 14 and 28. These findings suggest contributions of different cells in maintaining the fibrotic phenotype during fibrogenesis. Treatment of fibroblasts with recombinant CTGF along with TGF-ß increases profibrotic markers in fibroblasts, confirming the synergistic effect of recombinant CTGF with TGF-ß in inducing pulmonary fibrosis. Also, the fibrotic extracellular matrix upregulated CTGF expression, compared with the normal extracellular matrix, suggesting that not only profibrotic mediators but also a profibrotic environment contributes to fibrogenesis. We also showed that pamrevlumab, a CTGF inhibitory antibody, partially attenuates fibrosis in the model. These results suggest that pamrevlumab could be an option for treatment of pulmonary fibrosis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Animais , Anticorpos Monoclonais Humanizados , Fator de Crescimento do Tecido Conjuntivo/genética , Células Endoteliais/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/genética , Ratos , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA