Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 39(38): 7539-7550, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31363063

RESUMO

The rostromedioventral striatum is critical for behavior dependent on evaluating rewards. We asked what contribution tonically active neurons (TANs), the putative striatal cholinergic interneurons, make in coding reward value in this part of the striatum. Two female monkeys were given the option to accept or reject an offered reward in each trial, the value of which was signaled by a visual cue. Forty-five percent of the TANs use temporally modulated activity to encode information about discounted value. These responses were significantly better represented using principal component analysis than by just counting spikes. The temporal coding is straightforward: the spikes are distributed according to a sinusoidal envelope of activity that changes gain, ranging from positive to negative according to discounted value. Our results show that the information about the relative value of an offered reward is temporally encoded in neural spike trains of TANs. This temporal coding may allow well tuned, coordinated behavior to emerge.SIGNIFICANCE STATEMENT Ever since the discovery that neurons use trains of pulses to transmit information, it seemed self-evident that information would be encoded into the pattern of the spikes. However, there is not much evidence that spike patterns encode cognitive information. We find that a set of interneurons, the tonically active neurons (TANs) in monkeys' striatum, use temporal patterns of response to encode information about the discounted value of offered rewards. The code seems straightforward: a sinusoidal envelope that changes gain according to the discounted value of the offer, describes the rate of spiking across time. This temporal modulation may provide a means to synchronize these interneurons and the activity of other neural elements including principal output neurons.


Assuntos
Comportamento Animal/fisiologia , Interneurônios/fisiologia , Recompensa , Estriado Ventral/fisiologia , Animais , Feminino , Macaca mulatta
2.
Mov Disord ; 30(8): 1014-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26095280

RESUMO

Basal ganglia disorders such as Parkinson's disease, dystonia, and Huntington's disease are characterized by a dysregulation of the basal ganglia neuromodulators (dopamine, acetylcholine, and others), which impacts cortico-striatal transmission. Basal ganglia disorders are often associated with an imbalance between the midbrain dopaminergic and striatal cholinergic systems. In contrast to the extensive research and literature on the consequences of a malfunction of midbrain dopaminergic signaling on the plasticity of the cortico-striatal synapse, very little is known about the role of striatal cholinergic interneurons in normal and pathological control of cortico-striatal transmission. In this review, we address the functional role of striatal cholinergic interneurons, also known as tonically active neurons and attempt to understand how the alteration of their functional properties in basal ganglia disorders leads to abnormal cortico-striatal synaptic plasticity. Specifically, we suggest that striatal cholinergic interneurons provide a permissive signal, which enables long-term changes in the efficacy of the cortico-striatal synapse. We further discuss how modifications in the striatal cholinergic activity pattern alter or prohibit plastic changes of the cortico-striatal synapse. Long-term cortico-striatal synaptic plasticity is the cellular substrate of procedural learning and adaptive control behavior. Hence, abnormal changes in this plasticity may underlie the inability of patients with basal ganglia disorders to adjust their behavior to situational demands. Normalization of the cholinergic modulation of cortico-striatal synaptic plasticity may be considered as a critical feature in future treatments of basal ganglia disorders.


Assuntos
Doenças dos Gânglios da Base/fisiopatologia , Córtex Cerebral/fisiologia , Neurônios Colinérgicos/fisiologia , Interneurônios/fisiologia , Neostriado/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Córtex Cerebral/fisiopatologia , Humanos , Neostriado/fisiopatologia
3.
Brain Struct Funct ; 228(2): 589-611, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36653544

RESUMO

Cholinergic interneurons in the striatum, also known as tonically active interneurons or TANs, are thought to have a strong effect on corticostriatal plasticity and on striatal activity and outputs, which in turn play a critical role in modulating downstream basal ganglia activity and movement. Striatal TANs can exhibit a variety of firing patterns and responses to synaptic inputs; furthermore, they have been found to display various surges and pauses in activity associated with sensory cues and reward delivery in learning as well as with motor tic production. To help explain the factors that contribute to TAN activity patterns and to provide a resource for future studies, we present a novel conductance-based computational model of a striatal TAN. We show that this model produces the various characteristic firing patterns observed in recordings of TANs. With a single baseline tuning associated with tonic firing, the model also captures a wide range of TAN behaviors found in previous experiments involving a variety of manipulations. In addition to demonstrating these results, we explain how various ionic currents in the model contribute to them. Finally, we use this model to explore the contributions of the acetylcholine released by TANs to the production of surges and pauses in TAN activity in response to strong excitatory inputs. These results provide predictions for future experimental testing that may help with efforts to advance our understanding of the role of TANs in reinforcement learning and in motor disorders such as Tourette's syndrome.


Assuntos
Corpo Estriado , Interneurônios , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Colinérgicos , Neostriado/fisiologia , Aprendizagem/fisiologia
4.
Elife ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579422

RESUMO

Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostriatal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine-tuned by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can disynaptically inhibit SPNs by activating α4ß2 nicotinic acetylcholine receptors (nAChRs) on various GINs. Measurements of this disynaptic inhibitory pathway, however, indicate that it is too slow to compete with direct GIN-mediated feedforward inhibition. Moreover, functional nAChRs are also present on populations of GINs that respond only weakly to phasic activation of CINs, such as parvalbumin-positive fast-spiking interneurons (PV-FSIs), making the overall role of nAChRs in shaping striatal synaptic integration unclear. Using acute striatal slices from mice we show that upon synchronous optogenetic activation of corticostriatal projections blockade of α4ß2 nAChRs shortened SPN spike latencies and increased postsynaptic depolarizations. The nAChR-dependent inhibition was mediated by downstream GABA release, and data suggest that the GABA source was not limited to GINs that respond strongly to phasic CIN activation. In particular, the observed decrease in spike latency caused by nAChR blockade was associated with a diminished frequency of spontaneous inhibitory postsynaptic currents in SPNs, a parallel hyperpolarization of PV-FSIs, and was occluded by pharmacologically preventing cortical activation of PV-FSIs. Taken together, we describe a role for tonic (as opposed to phasic) activation of nAChRs in striatal function. We conclude that tonic activation of nAChRs by CINs maintains a GABAergic brake on cortically-driven striatal output by 'priming' feedforward inhibition, a process that may shape SPN spike timing, striatal processing, and synaptic plasticity.


Assuntos
Corpo Estriado , Nicotina , Animais , Colinérgicos/metabolismo , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Camundongos , Neurônios/metabolismo , Nicotina/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
Front Cell Neurosci ; 15: 674399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168539

RESUMO

The striatum participates in numerous important behaviors. Its principal projection neurons use GABA and peptides as neurotransmitters and interact extensively with interneurons, including cholinergic interneurons (ChIs) that are tonically active. Dissecting the interactions between projection neurons and ChIs is important for uncovering the role and mechanisms of the striatal microcircuits. Here, by combining several optogenetic tools with cell type-specific electrophysiological recordings, we uncovered direct electrical coupling between D1-type projection neurons and ChIs, in addition to the chemical transmission between these two major cell types. Optogenetic stimulation or inhibition led to bilateral current exchanges between D1 neurons and ChIs, which can be abolished by gap junction blockers. We further confirmed the presence of gap junctions through paired electrophysiological recordings and dye microinjections. Finally, we found that activating D1 neurons promotes basal activity of ChIs via gap junctions. Collectively, these results reveal the coexistence of the chemical synapse and gap junctions between D1 neurons and ChIs, which contributes to maintaining the tonically active firing patterns of ChIs.

6.
Neuroscience ; 446: 271-284, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32801050

RESUMO

An animal's choice behavior is shaped by the outcome feedback from selected actions in a trial-and-error approach. Tonically active neurons (TANs), presumed cholinergic interneurons in the striatum, are thought to be involved in the learning and performance of reward-directed behaviors, but it remains unclear how TANs are involved in shaping reward-directed choice behaviors based on the outcome feedback. To this end, we recorded activity of TANs from the dorsal striatum of two macaque monkeys (Macaca fuscata; 1 male, 1 female) while they performed a multi-step choice task to obtain multiple rewards. In this task, the monkeys first searched for a rewarding target from among three alternatives in a trial-and-error manner and then earned additional rewards by repeatedly choosing the rewarded target. We found that a considerable proportion of TANs selectively responded to either the reward or the no-reward outcome feedback during the trial-and-error search, but these feedback responses were not observed during repeat trials. Moreover, the feedback responses of TANs were similarly observed in any search trials, without distinctions regarding the predicted probability of rewards and the location of chosen targets. Unambiguously, TANs detected reward and no-reward feedback specifically when the monkeys performed trial-and-error searches, in which the monkeys were learning the value of the targets and adjusting their subsequent choice behavior based on the reward and no-reward feedback. These results suggest that striatal cholinergic interneurons signal outcome feedback specifically during search behavior, in circumstances where the choice outcomes cannot be predicted with certainty by the animals.


Assuntos
Neurônios , Recompensa , Animais , Corpo Estriado , Retroalimentação , Feminino , Haplorrinos , Masculino
7.
Front Neural Circuits ; 13: 10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846930

RESUMO

In this study, we explore the functional role of striatal cholinergic interneurons, hereinafter referred to as tonically active neurons (TANs), via computational modeling; specifically, we investigate the mechanistic relationship between TAN activity and dopamine variations and how changes in this relationship affect reinforcement learning in the striatum. TANs pause their tonic firing activity after excitatory stimuli from thalamic and cortical neurons in response to a sensory event or reward information. During the pause striatal dopamine concentration excursions are observed. However, functional interactions between the TAN pause and striatal dopamine release are poorly understood. Here we propose a TAN activity-dopamine relationship model and demonstrate that the TAN pause is likely a time window to gate phasic dopamine release and dopamine variations reciprocally modulate the TAN pause duration. Furthermore, this model is integrated into our previously published model of reward-based motor adaptation to demonstrate how phasic dopamine release is gated by the TAN pause to deliver reward information for reinforcement learning in a timely manner. We also show how TAN-dopamine interactions are affected by striatal dopamine deficiency to produce poor performance of motor adaptation.


Assuntos
Neurônios Colinérgicos/fisiologia , Simulação por Computador , Corpo Estriado/citologia , Modelos Neurológicos , Reforço Psicológico , Animais , Dopamina/metabolismo , Humanos , Vias Neurais/fisiologia
8.
Biol Psychiatry ; 86(5): 388-396, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30955842

RESUMO

BACKGROUND: Environmental reward-predictive stimuli provide a major source of motivation for adaptive reward pursuit behavior. This cue-motivated behavior is known to be mediated by the nucleus accumbens (NAc) core. The cholinergic interneurons in the NAc are tonically active and densely arborized and thus well suited to modulate NAc function. However, their causal contribution to adaptive behavior remains unknown. Here we investigated the function of NAc cholinergic interneurons in cue-motivated behavior. METHODS: We used chemogenetics, optogenetics, pharmacology, and a translationally analogous Pavlovian-to-instrumental transfer behavioral task designed to assess the motivating influence of a reward-predictive cue over reward-seeking actions in male and female rats. RESULTS: The data show that NAc cholinergic interneuron activity critically opposes the motivating influence of appetitive cues. Chemogenetic inhibition of NAc cholinergic interneurons augmented cue-motivated behavior. Optical stimulation of acetylcholine release from NAc cholinergic interneurons prevented cues from invigorating reward-seeking behavior, an effect that was mediated by activation of ß2-containing nicotinic acetylcholine receptors. CONCLUSIONS: NAc cholinergic interneurons provide a critical regulatory influence over adaptive cue-motivated behavior and therefore are a potential therapeutic target for the maladaptive cue-motivated behavior that marks many psychiatric conditions, including addiction and depression.


Assuntos
Antagonistas Colinérgicos/farmacologia , Dopamina/metabolismo , Interneurônios/fisiologia , Motivação/fisiologia , Núcleo Accumbens/fisiologia , Acetilcolina/metabolismo , Animais , Condicionamento Clássico , Condicionamento Operante , Sinais (Psicologia) , Comportamento Alimentar/efeitos dos fármacos , Feminino , Interneurônios/efeitos dos fármacos , Masculino , Motivação/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Long-Evans , Ratos Transgênicos , Receptores Colinérgicos/metabolismo , Recompensa , Transferência de Experiência
9.
Neuron ; 101(4): 662-672.e5, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30638901

RESUMO

Cholinergic interneurons (ChIs) in the nucleus accumbens (NAc) have been implicated in drug addiction, reward, and mood disorders. However, the physiological role of ChIs in depression has not been characterized. Here, we show that the tonic firing rate of ChIs in NAc shell is reduced in chronic stress mouse models and in a genetic mouse model of depression. Chemogenetic inhibition of NAc ChIs renders naive mice susceptible to stress, whereas enhancement of ChI activity reverses depressive phenotypes. As a component of the molecular mechanism, we found that the expression and function of the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) are decreased in ChIs of NAc shell in depressed mice. Overexpression of HCN2 channels in ChIs enhances cell activity and is sufficient to rescue depressive phenotypes. These data suggest that enhancement of HCN2 channel activity in NAc ChIs is a feasible approach for the development of a new class of antidepressants.


Assuntos
Neurônios Colinérgicos/metabolismo , Transtorno Depressivo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Interneurônios/metabolismo , Núcleo Accumbens/metabolismo , Potenciais de Ação , Animais , Neurônios Colinérgicos/fisiologia , Transtorno Depressivo/fisiopatologia , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiopatologia
10.
Neuropharmacology ; 117: 49-60, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28126496

RESUMO

Psychiatric disorders such as anxiety, depression and addiction are often comorbid brain pathologies thought to share common mechanistic biology. As part of the cortico-limbic circuit, the nucleus accumbens shell (NAcSh) plays a fundamental role in integrating information in the circuit, such that modulation of NAcSh circuitry alters anxiety, depression, and addiction-related behaviors. Intracellular kinase cascades in the NAcSh have proven important mediators of behavior. To investigate glycogen-synthase kinase 3 (GSK3) beta signaling in the NAcSh in vivo we knocked down GSK3beta expression with a novel adeno-associated viral vector (AAV2) and assessed changes in anxiety- and depression-like behavior and cocaine self-administration in GSK3beta knockdown rats. GSK3beta knockdown reduced anxiety-like behavior while increasing depression-like behavior and cocaine self-administration. Correlative electrophysiological recordings in acute brain slices were used to assess the effect of AAV-shGSK3beta on spontaneous firing and intrinsic excitability of tonically active interneurons (TANs), cells required for input and output signal integration in the NAcSh and for processing reward-related behaviors. Loose-patch recordings showed that TANs transduced by AAV-shGSK3beta exhibited reduction in tonic firing and increased spike half width. When assessed by whole-cell patch clamp recordings these changes were mirrored by reduction in action potential firing and accompanied by decreased hyperpolarization-induced depolarizing sag potentials, increased action potential current threshold, and decreased maximum rise time. These results suggest that silencing of GSK3beta in the NAcSh increases depression- and addiction-related behavior, possibly by decreasing intrinsic excitability of TANs. However, this study does not rule out contributions from other neuronal sub-types.


Assuntos
Ansiedade/genética , Comportamento Aditivo/genética , Comportamento Animal/fisiologia , Depressão/genética , Glicogênio Sintase Quinase 3 beta/fisiologia , Interneurônios/fisiologia , Núcleo Accumbens/fisiologia , Potenciais de Ação/fisiologia , Animais , Cocaína/farmacologia , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Ratos , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA