Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Res ; 242: 117820, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048867

RESUMO

Engineered nanomaterials (ENMs) are inevitably released into the environment with the exponential application of nanotechnology. Parts of ENMs eventually accumulate in the soil environment leading to potential adverse effects on soil ecology, crop production, and human health. Therefore, the safety application of ENMs on soil has been widely discussed in recent years. More detailed safety information and potential soil environmental risks are urgently needed. However, most of the studies on the environmental effects of metal-based ENMs have been limited to single-species experiments, ecosystem processes, or abiotic processes. The present review formulated the source and the behaviors of the ENMs in soil, and the potential effects of single and co-exposure ENMs on soil microorganisms, soil fauna, and plants were introduced. The toxicity mechanism of ENMs to soil organisms was also reviewed including oxidative stress, the release of toxic metal ions, and physical contact. Soil properties affect the transport, transformation, and toxicity of ENMs. Toxic mechanisms of ENMs include oxidative stress, ion release, and physical contact. Joint toxic effects occur through adsorption, photodegradation, and loading. Besides, future research should focus on the toxic effects of ENMs at the food chain levels, the effects of ENMs on plant whole-lifecycle, and the co-exposure and long-term toxicity effects. A fast and accurate toxicity evaluation system and model method are urgently needed to solve the current difficulties. It is of great significance for the sustainable development of ENMs to provide the theoretical basis for the ecological risk assessment and environmental management of ENMs.


Assuntos
Ecossistema , Nanoestruturas , Humanos , Solo , Nanoestruturas/toxicidade , Nanotecnologia , Plantas
2.
Environ Res ; 258: 119451, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906443

RESUMO

A key challenge for the tannery industries is the volume of tannery waste water (TWW) generated during the processing of leather, releasing various forms of toxic heavy metals resulting in uncontrolled discharge of tannery waste (TW) into the environment leading to pollution. The pollutants in TW includes heavy metals such as chromium (Cr), cadmium (Cd), lead (Pb) etc, when discharged above the permissible limit causes ill effects on humans. Therefore, several researchers have reported the application of biological and non-biological methods for the removal of pollutants in TW. This review provides insights on the global scenario of tannery industries and the harmful effects of heavy metal generated by tannery industry on micro and macroorganisms of the various ecological niches. It also provides information on the process, advantages and disadvantages of non-biological methods such as electrochemical oxidation, advanced oxidation processes, photon assisted catalytic remediation, adsorption and membrane technology. The various biological methods emphasised includes strategies such as constructed wetland, vermitechnology, phytoremediation, bioaugmentation, quorum sensing and biofilm in the remediation of heavy metals from tannery wastewater (TWW) with special emphasize on chromium.

3.
Arch Toxicol ; 98(6): 1717-1725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684585

RESUMO

Antibiotics, which have been used for many years to treat infections, also play an important role in food contamination with antibiotic residues. There is also unnecessary use of antibiotics, particularly to increase production efficiency. Non-compliance with withdrawal periods and maximum residue limits (MRLs) for antibiotics used in food-producing animals results in undesirable events, such as allergic reactions, teratogenicity, carcinogenicity, changes in the microbiota and, in particular, antibiotic resistance. Therefore, it may be useful to avoid unnecessary use of antibiotics, to limit the use of antibiotics and to turn to alternatives that can be used instead of antibiotics. The aim of this review is to provide information on the undesirable effects of antibiotic residues in food-producing organisms and in the environment, their determination, and the precautions that can be taken.


Assuntos
Antibacterianos , Resíduos de Drogas , Contaminação de Alimentos , Antibacterianos/toxicidade , Contaminação de Alimentos/análise , Animais , Resíduos de Drogas/análise , Resíduos de Drogas/toxicidade , Humanos
4.
J Appl Toxicol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837250

RESUMO

In recent years, semiconductor nanomaterials, as one of the most promising and applied classes of engineered nanomaterials, have been widely used in industries such as photovoltaics, electronic devices, and biomedicine. However, occupational exposure is unavoidable during the production, use, and disposal stages of products containing these materials, thus posing potential health risks to workers. The intricacies of the work environment present challenges in obtaining comprehensive data on such exposure. Consequently, there remains a significant gap in understanding the exposure risks and toxic effects associated with semiconductor nanomaterials. This paper provides an overview of the current classification and applications of typical semiconductor nanomaterials. It also delves into the existing state of occupational exposure, methodologies for exposure assessment, and prevailing occupational exposure limits. Furthermore, relevant epidemiological studies are examined. Subsequently, the review scrutinizes the toxicity of semiconductor nanomaterials concerning target organ toxicity, toxicity mechanisms, and influencing factors. The aim of this review is to lay the groundwork for enhancing the assessment of occupational exposure to semiconductor nanomaterials, optimizing occupational exposure limits, and promoting environmentally sustainable development practices in this domain.

5.
Ecotoxicol Environ Saf ; 276: 116322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636258

RESUMO

Lead is a widespread environmental pollutant with serious adverse effects on human health, but the mechanism underlying its toxicity remains elusive. This study aimed to investigate the role of miR-584-5p / Ykt6 axis in the toxic effect of lead on HK-2 cells and the related mechanism. Our data suggested that lead exposure caused significant cytotoxicity, DNA and chromosome damage to HK-2 cells. Mechanistically, lead exposure down-regulated miR-584-5p and up-regulated Ykt6 expression, consequently, autophagosomal number and autophagic flux increased, lysosomal number and activity decreased, exosomal secretion increased. Interestingly, when miR-584-5p level was enhanced with mimic, autophagosomal number and autophagic flux decreased, lysosomal number and activity increased, ultimately, exosomal secretion was down-regulated, which resulted in significant aggravated toxic effects of lead. Further, directly blocking exosomal secretion with inhibitor GW4869 also resulted in exacerbated toxic effects of lead. Herein, we conclude that miR-584-5p / Ykt6 - mediated autophagy - lysosome - exosome pathway may be a critical route affecting the toxic effects of lead on HK-2 cells. We provide a novel insight into the mechanism underlying the toxicity of lead on human cells.


Assuntos
Autofagia , Exossomos , Chumbo , Lisossomos , MicroRNAs , Humanos , Autofagia/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Lisossomos/efeitos dos fármacos , Linhagem Celular , Chumbo/toxicidade , Poluentes Ambientais/toxicidade , ATPases Vacuolares Próton-Translocadoras/genética , Dano ao DNA
6.
Ecotoxicol Environ Saf ; 270: 115894, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171100

RESUMO

Algal toxins produced by microalgae, such as domoic acid (DA)1, have toxic effects on humans. However, toxicity tests using mice only yield lethal doses of algal toxins without providing insights into the mechanism of action on cells. In this study, a fast segmentation of microfluidic flow cytometry cell images based on the bidirectional background subtraction (BBS)2 method was developed to get the visual evidence of apoptosis in both bright-field and fluorescence images. This approach enables mapping of changes in cell morphology and activity under algal toxins, allowing for fast (within 60 s) and automated biological detection. By combining microfluidics with flow cytometry, the intricate cellular-level reaction process can be observed in micro samples of 293 T cells and mouse spleen cells, offering potential for future in vitro experiments.


Assuntos
Microalgas , Microfluídica , Humanos , Animais , Camundongos , Citometria de Fluxo
7.
Pestic Biochem Physiol ; 199: 105799, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458669

RESUMO

Fenpropathrin (FEN), a pyrethroid pesticide, is frequently detected in natural water bodies, unavoidable pose adverse effects to aquatic organisms. However, the harmful effects and potential mechanisms of FEN on aquatic species are poorly understood. In this study, common carp were treatment with FEN at 0.45 and 1.35 µg/L for 14 d, and the toxic effects and underlying mechanisms of FEN on the intestine of carp were revealed. RNA-seq results showed that FEN exposure cause a wide range of transcriptional alterations in the intestine and the differentially expressed genes were mainly enrichment in the pathways related to immune and metabolism. Specifically, FEN exposure induced pathological damage and altered submicroscopic structure of the intestine, elevated the levels of Bacteroides fragilis enterotoxin, altered the contents of claudin-1, occludin, and zonula occluden-1 (ZO-1), and causing injury to the intestinal barrier. In addition, inflammation-related index TNF-α in the serum and IL-6 in the intestinal tissues were generally increased after FEN exposure. Moreover, FEN exposure promoted an increase in reactive oxygen species (ROS), altered the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), upregulated the contents of malondialdehyde (MDA) in the intestines. The apoptosis-related parameter cytochrome c, caspase-9, and caspase-3 were significantly altered, indicating that inflammation reaction, oxidative stress, and apoptosis may be involved in the toxic mechanism of FEN on carp. Moreover, FEN treatment also altered the intestinal flora community significantly, which may affect the intestinal normal physiological function and thus affect the growth of fish. Overall, the present study help to clarify the intestinal reaction mechanisms after FEN treatment, and provide a basis for the risk assessment of FEN.


Assuntos
Carpas , Piretrinas , Animais , Dieta , Carpas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/farmacologia , Intestinos , Antioxidantes/farmacologia , Estresse Oxidativo , Inflamação , Piretrinas/toxicidade
8.
J Environ Manage ; 352: 120039, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38218169

RESUMO

Microplastics (MPs)/nanoplastics (NPs) are widely found in the natural environment, including soil, water and the atmosphere, which are essential for human survival. In the recent years, there has been a growing concern about the potential impact of MPs/NPs on human health. Due to the increasing interest in this research and the limited number of studies related to the health effects of MPs/NPs on humans, it is necessary to conduct a systematic assessment and review of their potentially toxic effects on human organs and tissues. Humans can be exposed to microplastics through ingestion, inhalation and dermal contact, however, ingestion and inhalation are considered as the primary routes. The ingested MPs/NPs mainly consist of plastic particles with a particle size ranging from 0.1 to 1 µm, that distribute across various tissues and organs within the body, which in turn have a certain impact on the nine major systems of the human body, especially the digestive system and respiratory system, which are closely related to the intake pathway of MPs/NPs. The harmful effects caused by MPs/NPs primarily occur through potential toxic mechanisms such as induction of oxidative stress, generation of inflammatory responses, alteration of lipid metabolism or energy metabolism or expression of related functional factors. This review can help people to systematically understand the hazards of MPs/NPs and related toxicity mechanisms from the level of nine biological systems. It allows MPs/NPs pollution to be emphasized, and it is also hoped that research on their toxic effects will be strengthened in the future.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Plásticos , Atmosfera , Metabolismo Energético , Ingestão de Alimentos , Poluentes Químicos da Água/toxicidade
9.
Environ Geochem Health ; 46(2): 61, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281271

RESUMO

The objective of this study was to investigate the effects of anthracene (Ant) with 3 rings, benzo[a]anthracene (BaA) with 4 rings and benzo[b]fluoranthene (BbF) with 5 rings in fine particulate matter (PM2.5) at different exposure times (4 h and 24 h) and low exposure levels (0 pg/mL, 0.1 pg/mL, 1 pg/mL, 100 pg/mL and 10,000 pg/mL) on RAW264.7 cells. The changes of interleukin-6 (IL-6) and oxidative stress levels in RAW264.7 cells were investigated by methyl-thiazolyl-tetrazolium (MTT) and enzyme-linked immunosorbent assay (ELISA). Pearson correlation analysis was used to analyze the correlation between variables. Ant, BaA and BbF induced the secretion of IL-6 and the occurrence of oxidative stress in RAW264.7 cells. The inflammatory effect and oxidative damage were exacerbated with prolonged exposure time, increasing exposure concentration and increasing number of PAH rings. At the same time, IL-6 was found to have a certain correlation with the levels of ROS, MDA and SOD. Exposure to atmospheric PAHs at low concentrations can also produce toxic effects on cells, IL-6 and oxidative stress work together in cell damage. The study is expected to provide a theoretical and experimental basis for air pollution control and human health promotion.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/toxicidade , Antracenos/toxicidade , Interleucina-6 , Macrófagos/química , Estresse Oxidativo , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Camundongos , Células RAW 264.7
10.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34343245

RESUMO

Each patient's cancer consists of multiple cell subpopulations that are inherently heterogeneous and may develop differing phenotypes such as drug sensitivity or resistance. A personalized treatment regimen should therefore target multiple oncoproteins in the cancer cell populations that are driving the treatment resistance or disease progression in a given patient to provide maximal therapeutic effect, while avoiding severe co-inhibition of non-malignant cells that would lead to toxic side effects. To address the intra- and inter-tumoral heterogeneity when designing combinatorial treatment regimens for cancer patients, we have implemented a machine learning-based platform to guide identification of safe and effective combinatorial treatments that selectively inhibit cancer-related dysfunctions or resistance mechanisms in individual patients. In this case study, we show how the platform enables prediction of cancer-selective drug combinations for patients with high-grade serous ovarian cancer using single-cell imaging cytometry drug response assay, combined with genome-wide transcriptomic and genetic profiles. The platform makes use of drug-target interaction networks to prioritize those combinations that warrant further preclinical testing in scarce patient-derived primary cells. During the case study in ovarian cancer patients, we investigated (i) the relative performance of various ensemble learning algorithms for drug response prediction, (ii) the use of matched single-cell RNA-sequencing data to deconvolute cell population-specific transcriptome profiles from bulk RNA-seq data, (iii) and whether multi-patient or patient-specific predictive models lead to better predictive accuracy. The general platform and the comparison results are expected to become useful for future studies that use similar predictive approaches also in other cancer types.


Assuntos
Neoplasias Ovarianas/terapia , Algoritmos , Terapia Combinada , Feminino , Humanos , Células Tumorais Cultivadas
11.
Biometals ; 36(5): 1081-1108, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37209221

RESUMO

Bacillus toyonensis SFC 500-1E is a member of the consortium SFC 500-1 able to remove Cr(VI) and simultaneously tolerate high phenol concentrations. In order to elucidate mechanisms utilized by this strain during the bioremediation process, the differential expression pattern of proteins was analyzed when it grew with or without Cr(VI) (10 mg/L) and Cr(VI) + phenol (10 and 300 mg/L), through two complementary proteomic approaches: gel-based (Gel-LC) and gel-free (shotgun) nanoUHPLC-ESI-MS/MS. A total of 400 differentially expressed proteins were identified, out of which 152 proteins were down-regulated under Cr(VI) and 205 up-regulated in the presence of Cr(VI) + phenol, suggesting the extra effort made by the strain to adapt itself and keep growing when phenol was also added. The major metabolic pathways affected include carbohydrate and energetic metabolism, followed by lipid and amino acid metabolism. Particularly interesting were also ABC transporters and the iron-siderophore transporter as well as transcriptional regulators that can bind metals. Stress-associated global response involving the expression of thioredoxins, SOS response, and chaperones appears to be crucial for the survival of this strain under treatment with both contaminants. This research not only provided a deeper understanding of B. toyonensis SFC 500-1E metabolic role in Cr(VI) and phenol bioremediation process but also allowed us to complete an overview of the consortium SFC 500-1 behavior. This may contribute to an improvement in its use as a bioremediation strategy and also provides a baseline for further research.


Assuntos
Fenol , Proteômica , Biodegradação Ambiental , Cromo/química , Fenol/química , Fenol/metabolismo , Fenóis , Espectrometria de Massas em Tandem
12.
Environ Res ; 237(Pt 1): 116870, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37567383

RESUMO

Diversified nanosystems with tunable physicochemical attributes have emerged as potential solution to globally devastating cancer by offering novel possibilities for improving the techniques of cancer detection, imaging, therapies, diagnosis, drug delivery and treatment. Drug delivery systems based on nanoparticles (NPs) with ability of crossing different biological barriers are becoming increasingly popular. Besides, NPs are utilized in pharmaceutical sciences to mitigate the toxicity of conventional cancer therapeutics. However, significant NPs-associated toxicity, off-targeted activities, and low biocompatibility limit their utilization for cancer theranostics and can be hazardous to cancer patients up to life-threatening conditions. NPs interact with the biomolecules and disturb their regular function by aggregating inside cells and forming a protein corona, and the formulation turns ineffective in controlling cancer cell growth. The adverse interactions between NPs and biological entities can lead to life-threatening toxicities. This review focuses on the widespread use of various NPs including zinc oxide, titanium oxide, silver, and gold, which serve as efficient nano-vehicles and demonstrate notable pharmacokinetic and pharmacodynamic advantages in cancer therapy. Subsequently, the mechanism of nanotoxicity attached with these NPs, alternate solutions and their prospect to revolutionize cancer theranostics are highlighted. This review will serve as guide for future developments associated with high-performance NPs with controlled toxicity for establishing them as modern-age nanotools to manage cancer in tailored manner.

13.
Environ Res ; 239(Pt 1): 117345, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37821065

RESUMO

Owing to accelerated urbanization and industrialization, many plastic products have been manufactured and discharged into the environment, causing environmental and public health problems. Plastics in environmental media are further degraded by prolonged exposure to light, heat, mechanical friction, and other factors to form new pollutants called microplastics (MPs). Medical plastics have become a crucial source of plastics in environmental media. However, the release profiles of MPs from medical plastics and their potential ecological and health risks remain unclear. We used optical photothermal infrared spectroscopy to explore the release profiles of eight typical disposable medical devices under high-temperature steam disinfection (HSD). We also evaluated the toxicity of disposable medical devices-derived MPs in Caenorhabditis elegans (C. elegans). Our results showed that the changes in the surface morphology and modification of the disposable medical devices were mainly associated with the material. Polypropylene (PP) and polystyrene (PS) materials exhibited high aging phenomena (e.g., bumps, depressions, bulges and cracks), and HSD broke their oxygen-containing functional groups and carbon chains. By contrast, minor changes in the chemical and physical properties were observed in the polyvinyl chloride (PVC)-prepared disposable medical devices under the same conditions. Further physicochemical characterization indicated that the amount of MPs released from PP-prepared disposable medical devices (P4: 1.27 ± 0.34 × 106) was greater than that from PVC-prepared disposable medical devices (P7: 1.08 ± 0.14 × 105). The particle size of the released MPs was the opposite, PVC-prepared disposable medical devices (P7: 11.45 ± 1.79 µm) > PP-prepared disposable medical devices (P4: 7.18 ± 0.52 µm). Toxicity assessment revealed that disposable medical devices-released MPs significantly increased germ cell apoptosisin C. elegans. Moreover, MPs from PP-prepared disposable medical devices disrupted the intestinal barrier of worms, decreasing their lifespan. Our findings provided novel information regarding the profiles and mechanisms of MP release from disposable medical devices and revealed their potential risks to ecological environment.


Assuntos
Microplásticos , Plásticos , Animais , Microplásticos/toxicidade , Caenorhabditis elegans , Polipropilenos , Carbono
14.
Ecotoxicol Environ Saf ; 251: 114538, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652740

RESUMO

The increasing use of Rare Earth Elements (REE) in emerging technologies, medicine and agriculture has led to chronic aquatic compartment contamination. In this context, this aimed to evaluate the acute toxic effects of lanthanum (La), neodymium (Nd) and samarium (Sm), as both single and binary and ternary mixtures on the survival of the microcrustacean Daphnia similis. A metal solution medium with (MS) and without EDTA and cyanocobalamin (MSq) as chelators was employed as the assay dilution water to assess REE bioavailability effects. In the single exposure experiments, toxicity in the MS medium decreased following the order La > Sm > Nd, while the opposite was noted for the MSq medium, which was also more toxic than the MS medium. The highest MS toxicity was observed for the binary Nd + La (1:1) mixture (EC50 48 h of 11.57 ± 1.22 mg.L-1) and the lowest, in the ternary Sm + La + Nd (2:2:1) mixture (EC50 48 h 41.48 ± 1.40 mg.L-1). The highest toxicity in the MSq medium was observed in the single assays and in the binary Sm + Nd (1:1) mixture (EC50 48 h 10.60 ± 1.57 mg.L-1), and the lowest, in the ternary Sm + La + Nd (1:2:2) mixture (EC50 48 h 36.76 ± 1.54 mg.L-1). Concerning the MS medium, 75 % of interactions were additive, 19 % antagonistic, and 6 % synergistic. In the MSq medium, 56 % of interactions were synergistic and 44 % additive. The higher toxicity observed in the MSq medium indicates that the absence of chelators can increase the concentrations of more toxic free ions, suggesting that the MS medium should be avoided in REE assays. Additive interactions were observed in greater or equivalent amounts in both media and were independent of elemental mixture ratios. These findings improve the understanding of environmental REE effects, contributing to the establishment of future guidelines and ecological risk calculations.


Assuntos
Daphnia , Metais Terras Raras , Animais , Metais Terras Raras/toxicidade , Samário , Lantânio/toxicidade , Neodímio/farmacologia , Quelantes/farmacologia
15.
Ecotoxicology ; 32(6): 768-781, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37480494

RESUMO

The harmful dinoflagellate Karenia mikimotoi is responsible for the mortality of aquatic animals. However, the mechanism behind these toxic effects has not been fully determined. Herein, the toxic effects of K. mikimotoi on the growth performance, antioxidative responses, physiological activities, and energetic substance contents of rotifer Brachionus plicatilis were assessed. Rotifers were exposed to Nannochloropsis salina (Eustigmatophyceae), K. mikimotoi, and a mixture of N. salina and K. mikimotoi with biomass ratio proportions of 3:1, 1:1, and 1:3, respectively. Results indicated that K. mikimotoi negatively affected the population growth, survival, and specific growth rates of rotifers within 24 h. The level of reactive oxygen species (ROS), the content of malondialdehyde, and the activity of amylase increased. However, the total antioxidant capacity level, pepsase, cellulase, alkaline phosphatase, xanthine oxidase, and lactate dehydrogenase activities, and glycogen and protein contents decreased with increasing proportions of K. mikimotoi. The mixture of 50% N. salina and 50% K. mikimotoi promoted the increase in glutamic-pyruvic transaminase activity and triglyceride content. These findings underscore ROS-mediated antioxidative responses, physiological responses, and energetic substance content changes in B. plicatilis work together to affect population dynamics inhibition of rotifers by K. mikimotoi.


Assuntos
Artrópodes , Dinoflagellida , Rotíferos , Animais , Antioxidantes , Espécies Reativas de Oxigênio , Fosfatase Alcalina
16.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686292

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in plastics, textiles, polyurethane foam, and other materials. They contain two halogenated aromatic rings bonded by an ester bond and are classified according to the number and position of bromine atoms. Due to their widespread use, PBDEs have been detected in soil, air, water, dust, and animal tissues. Besides, PBDEs have been found in various tissues, including liver, kidney, adipose, brain, breast milk and plasma. The continued accumulation of PBDEs has raised concerns about their potential toxicity, including hepatotoxicity, kidney toxicity, gut toxicity, thyroid toxicity, embryotoxicity, reproductive toxicity, neurotoxicity, and immunotoxicity. Previous studies have suggested that there may be various mechanisms contributing to PBDEs toxicity. The present study aimed to outline PBDEs' toxic effects and mechanisms on different organ systems. Given PBDEs' bioaccumulation and adverse impacts on human health and other living organisms, we summarize PBDEs' effects and potential toxicity mechanisms and tend to broaden the horizons to facilitate the design of new prevention strategies for PBDEs-induced toxicity.


Assuntos
Éteres Difenil Halogenados , Rim , Animais , Feminino , Humanos , Éteres Difenil Halogenados/toxicidade , Adiposidade , Bioacumulação , Leite Humano
17.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139049

RESUMO

Microplastics (MPs) are emerging pollutants and pose a significant threat to marine ecosystems. Although previous studies have documented the mechanisms and toxic effects of aging MPs in various environments, the impact of the marine environment on MPs remains unclear. In the present study, the aging process of polystyrene (PS) in seawater was simulated and the changes in its physicochemical properties were investigated. Our results showed that the surface of the PS eroded in the seawater, which was accompanied by the release of aged MPs with a smaller size. In situ optical photothermal infrared microspectroscopy revealed that the mechanism of PS aging was related to the opening of the carbonyl group and breaking of the bond between carbon and benzene removal. To verify the toxic effects of aged PS, Caenorhabditis elegans was exposed to PS. Aged PS resulted in a greater reduction in locomotion, vitality, and reproduction than virgin PS. Mechanistically, aged PS led to oxidative stress, high glutathione s-transferase activity, and high total glutathione in worms. Together, our findings provided novel information regarding the accelerated aging of PS in seawater and the increased toxicity of aged PS, which could improve our understanding of MPs' ecotoxicity in the marine environment.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Poliestirenos/química , Plásticos , Caenorhabditis elegans , Ecossistema , Microplásticos/química , Envelhecimento , Água do Mar/química
18.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176045

RESUMO

Envenomation by venomous fish, although not always fatal, is capable of causing damage to homeostasis by activating the inflammatory process, with the formation of edema, excruciating pain, necrosis that is difficult to heal, as well as hemodynamic and cardiorespiratory changes. Despite the wide variety of pharmacological treatments used to manage acute symptoms, none are effective in controlling envenomation. Knowing the essential role of neutralizing polyclonal antibodies in the treatment of envenoming for other species, such as snakes, this work aimed to produce a polyclonal antiserum in mice and test its ability to neutralize the main toxic effects induced by the venoms of the main venomous Brazilian fish. We found that the antiserum recognizes the main toxins present in the different venoms of Thalassophryne nattereri, Scorpaena plumieri, Potamotrygon gr. Orbignyi, and Cathorops spixii and was effective in pre-incubation trials. In an independent test, the antiserum applied immediately to the topical application of T. nattereri, P. gr orbygnyi, and C. spixii venoms completely abolished the toxic effects on the microcirculation, preventing alterations such as arteriolar contraction, slowing of blood flow in postcapillary venules, venular stasis, myofibrillar hypercontraction, and increased leukocyte rolling and adherence. The edematogenic and nociceptive activities induced by these venoms were also neutralized by the immediate application of the antiserum. Importantly, the antiserum prevented the acute inflammatory response in the lungs induced by the S. plumieri venom. The success of antiserum containing neutralizing polyclonal antibodies in controlling the toxic effects induced by different venoms offers a new strategy for the treatment of fish envenomation in Brazil.


Assuntos
Batracoidiformes , Peixes-Gato , Venenos de Peixe , Perciformes , Camundongos , Animais , Venenos de Peixe/toxicidade , Soros Imunes
19.
J Environ Sci Health B ; 58(3): 217-228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36861322

RESUMO

Due to their selective toxicity to insects, nicotinoid compounds have been widely used to control pests in crops and livestock around the world. However, despite the advantages presented, much has been discussed about their harmful effects on exposed organisms, either directly or indirectly, with regards to endocrine disruption. This study aimed to evaluate the lethal and sublethal effects of imidacloprid (IMD) and abamectin (ABA) formulations, separately and combined, on zebrafish (Danio rerio) embryos at different developmental stages. For this, Fish Embryo Toxicity (FET) tests were carried out, exposing two hours post-fertilization (hpf) zebrafish to 96 hours of treatments with five different concentrations of abamectin (0.5-11.7 mg L-1), imidacloprid (0.0001-1.0 mg L-1), and imidacloprid/abamectin mixtures (LC50/2 - LC50/1000). The results showed that IMD and ABA caused toxic effects in zebrafish embryos. Significant effects were observed regarding egg coagulation, pericardial edema, and lack of larvae hatching. However, unlike ABA, the IMD dose-response curve for mortality had a bell curve display, where medium doses caused more mortality than higher and lower doses. These data demonstrate the toxic influence of sublethal IMD and ABA concentrations on zebrafish, suggesting that these compounds should be listed for river and reservoir water-quality monitoring.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Peixe-Zebra , Embrião não Mamífero , Larva , Poluentes Químicos da Água/toxicidade
20.
Artigo em Chinês | MEDLINE | ID: mdl-37248089

RESUMO

Hexane is a widely used organic solvent in industry, and chronic hexane poisoning is the main occupational toxic lesion in China. In particular, axonal and myelin lesions in the distal thick fibers of the peripheral nervous system may be caused by 2, 5-hexanedione (2, 5-HD), an intermediate metabolite of n-hexane in humans. Hexane has toxic effects not only on the nervous system but also on the liver, kidneys, and reproductive organs. In this paper, we review the progress of research on the mechanism of n-hexane toxic neuropathy.


Assuntos
Hexanos , Hexanonas , Humanos , Hexanos/toxicidade , Indústrias , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA