Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.876
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(4): 890-903.e18, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29107329

RESUMO

Eukaryotic cells have evolved extensive protein quality-control mechanisms to remove faulty translation products. Here, we show that yeast cells continually produce faulty mitochondrial polypeptides that stall on the ribosome during translation but are imported into the mitochondria. The cytosolic protein Vms1, together with the E3 ligase Ltn1, protects against the mitochondrial toxicity of these proteins and maintains cell viability under respiratory conditions. In the absence of these factors, stalled polypeptides aggregate after import and sequester critical mitochondrial chaperone and translation machinery. Aggregation depends on C-terminal alanyl/threonyl sequences (CAT-tails) that are attached to stalled polypeptides on 60S ribosomes by Rqc2. Vms1 binds to 60S ribosomes at the mitochondrial surface and antagonizes Rqc2, thereby facilitating import, impeding aggregation, and directing aberrant polypeptides to intra-mitochondrial quality control. Vms1 is a key component of a rescue pathway for ribosome-stalled mitochondrial polypeptides that are inaccessible to ubiquitylation due to coupling of translation and translocation.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/fisiologia , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Citosol/metabolismo , Transporte de Elétrons , Homeostase , Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
2.
CA Cancer J Clin ; 72(5): 437-453, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35584404

RESUMO

Approximately one-half of individuals with cancer face personal economic burdens associated with the disease and its treatment, a problem known as financial toxicity (FT). FT more frequently affects socioeconomically vulnerable individuals and leads to subsequent adverse economic and health outcomes. Whereas multilevel systemic factors at the policy, payer, and provider levels drive FT, there are also accompanying intervenable patient-level factors that exacerbate FT in the setting of clinical care delivery. The primary strategy to intervene on FT at the patient level is financial navigation. Financial navigation uses comprehensive assessment of patients' risk factors for FT, guidance toward support resources, and referrals to assist patient financial needs during cancer care. Social workers or nurse navigators most frequently lead financial navigation. Oncologists and clinical provider teams are multidisciplinary partners who can support optimal FT management in the context of their clinical roles. Oncologists and clinical provider teams can proactively assess patient concerns about the financial hardship and employment effects of disease and treatment. They can respond by streamlining clinical treatment and care delivery planning and incorporating FT concerns into comprehensive goals of care discussions and coordinated symptom and psychosocial care. By understanding how age and life stage, socioeconomic, and cultural factors modify FT trajectory, oncologists and multidisciplinary health care teams can be engaged and informative in patient-centered, tailored FT management. The case presentations in this report provide a practical context to summarize authors' recommendations for patient-level FT management, supported by a review of key supporting evidence and a discussion of challenges to mitigating FT in oncology care. CA Cancer J Clin. 2022;72:437-453.


Assuntos
Neoplasias , Oncologistas , Estresse Financeiro , Humanos , Oncologia , Neoplasias/psicologia
3.
CA Cancer J Clin ; 72(4): 353-359, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35298025

RESUMO

Sexual function is a vital aspect of human health and is recognized as a critical component of cancer survivorship. Understanding and evaluating the impacts of radiotherapy on female sexual function requires precise knowledge of the organs involved in sexual function and the relationship between radiotherapy exposure and sexual tissue function. Although substantial evidence exists describing the impact of radiotherapy on male erectile tissues and related clinical sexual outcomes, there is very little research in this area in females. The lack of biomedical data in female patients makes it difficult to design studies aimed at optimizing sexual function postradiotherapy for female pelvic malignancies. This scoping review identifies and categorizes current research on the impacts of radiotherapy on normal female erectile tissues, including damage to normal functioning, clinical outcomes of radiation-related female erectile tissue damage, and techniques to spare erectile tissues or therapies to treat such damage. An evaluation of the evidence was performed, and a summary of findings was generated according to Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Extension for Scoping Reviews guidelines. Articles were included in the review that involved normal female erectile tissues and radiotherapy side effects. The results show that little scientific investigation into the impacts of radiotherapy on female erectile tissues has been performed. Collaborative scientific investigations by clinical, basic, and behavioral scientists in oncology and radiotherapy are needed to generate radiobiologic and clinical evidence to advance prospective evaluation, prevention, and mitigation strategies that may improve sexual outcomes in female patients.


Assuntos
Sobreviventes de Câncer , Disfunção Erétil , Lesões por Radiação , Disfunções Sexuais Fisiológicas , Disfunção Erétil/etiologia , Disfunção Erétil/prevenção & controle , Feminino , Humanos , Masculino , Ereção Peniana , Lesões por Radiação/etiologia , Disfunções Sexuais Fisiológicas/etiologia
4.
CA Cancer J Clin ; 72(1): 57-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714553

RESUMO

Oral mucositis (OM) is a common, highly symptomatic complication of cancer therapy that affects patients' function, quality of life, and ability to tolerate treatment. In certain patients with cancer, OM is associated with increased mortality. Research on the management of OM is ongoing. Oral mucosal toxicities are also reported in targeted and immune checkpoint inhibitor therapies. The objective of this article is to present current knowledge about the epidemiology, pathogenesis, assessment, risk prediction, and current and developing intervention strategies for OM and other ulcerative mucosal toxicities caused by both conventional and evolving forms of cancer therapy.


Assuntos
Antineoplásicos/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Neoplasias/terapia , Úlceras Orais/epidemiologia , Lesões por Radiação/epidemiologia , Estomatite/epidemiologia , Humanos , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/patologia , Mucosa Bucal/efeitos da radiação , Úlceras Orais/diagnóstico , Úlceras Orais/etiologia , Úlceras Orais/psicologia , Prevalência , Qualidade de Vida , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Lesões por Radiação/psicologia , Índice de Gravidade de Doença , Estomatite/diagnóstico , Estomatite/etiologia , Estomatite/psicologia
5.
CA Cancer J Clin ; 71(5): 437-454, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34255347

RESUMO

Radiation therapy (RT) is a curative treatment for many malignancies and provides effective palliation in patients with tumor-related symptoms. However, the biophysical effects of RT are not specific to tumor cells and may produce toxicity due to exposure of surrounding organs and tissues. In this article, the authors review the clinical context, pathophysiology, risk factors, presentation, and management of RT side effects in each human organ system. Ionizing radiation works by producing DNA damage leading to tumor death, but effects on normal tissue may result in acute and/or late toxicity. The manifestation of toxicity depends on both cellular characteristics and affected organs' anatomy and physiology. There is usually a direct relationship between the radiation dose and volume to normal tissues and the risk of toxicity, which has led to guidelines and recommended dose limits for most tissues. Side effects are multifactorial, with contributions from baseline patient characteristics and other oncologic treatments. Technological advances in recent decades have decreased RT toxicity by dramatically improving the ability to deliver RT that maximizes tumor dose and minimizes organ dose. Thus the study of RT-associated toxicity is a complex, core component of radiation oncology training that continues to evolve alongside advances in cancer management. Because RT is used in up to one-half of all patients with cancer, an understanding of its acute and late effects in different organ systems is clinically pertinent to both oncologists and nononcologists.


Assuntos
Neoplasias/radioterapia , Lesões por Radiação , Relação Dose-Resposta à Radiação , Humanos , Cuidados Paliativos , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Lesões por Radiação/fisiopatologia , Lesões por Radiação/terapia , Fatores de Risco
6.
Physiol Rev ; 100(2): 633-672, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751166

RESUMO

Drugs are prescribed to manage or prevent symptoms and diseases, but may sometimes cause unexpected toxicity to muscles. The symptomatology and clinical manifestations of the myotoxic reaction can vary significantly between drugs and between patients on the same drug. This poses a challenge on how to recognize and prevent the occurrence of drug-induced muscle toxicity. The key to appropriate management of myotoxicity is prompt recognition that symptoms of patients may be drug related and to be aware that inter-individual differences in susceptibility to drug-induced toxicity exist. The most prevalent and well-documented drug class with unintended myotoxicity are the statins, but even today new classes of drugs with unintended myotoxicity are being discovered. This review will start off by explaining the principles of drug-induced myotoxicity and the different terminologies used to distinguish between grades of toxicity. The main part of the review will focus on the most important pathogenic mechanisms by which drugs can cause muscle toxicity, which will be exemplified by drugs with high risk of muscle toxicity. This will be done by providing information on key clinical and laboratory aspects, muscle electromyography patterns and biopsy results, and pathological mechanism and management for a specific drug from each pathogenic classification. In addition, rather new classes of drugs with unintended myotoxicity will be highlighted. Furthermore, we will explain why it is so difficult to diagnose drug-induced myotoxicity, and which tests can be used as a diagnostic aid. Lastly, a brief description will be given of how to manage and treat drug-induced myotoxicity.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/induzido quimicamente , Animais , Humanos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/epidemiologia , Doenças Musculares/fisiopatologia , Doenças Musculares/terapia , Miotoxicidade , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco
7.
Annu Rev Neurosci ; 42: 227-247, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30909783

RESUMO

Microsatellite mutations involving the expansion of tri-, tetra-, penta-, or hexanucleotide repeats cause more than 40 different neurological disorders. Although, traditionally, the position of the repeat within or outside of an open reading frame has been used to focus research on disease mechanisms involving protein loss of function, protein gain of function, or RNA gain of function, the discoveries of bidirectional transcription and repeat-associated non-ATG (RAN) have blurred these distinctions. Here we review what is known about RAN proteins in disease, the mechanisms by which they are produced, and the novel therapeutic opportunities they provide.


Assuntos
Expansão das Repetições de DNA/genética , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Biossíntese de Proteínas , Códon de Iniciação/genética , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/fisiologia , Mutação com Ganho de Função , Código Genético , Humanos , Mutação com Perda de Função , Repetições de Microssatélites/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Transcrição Gênica
8.
Proc Natl Acad Sci U S A ; 121(11): e2307810121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437545

RESUMO

Treating pregnancy-related disorders is exceptionally challenging because the threat of maternal and/or fetal toxicity discourages the use of existing medications and hinders new drug development. One potential solution is the use of lipid nanoparticle (LNP) RNA therapies, given their proven efficacy, tolerability, and lack of fetal accumulation. Here, we describe LNPs for efficacious mRNA delivery to maternal organs in pregnant mice via several routes of administration. In the placenta, our lead LNP transfected trophoblasts, endothelial cells, and immune cells, with efficacy being structurally dependent on the ionizable lipid polyamine headgroup. Next, we show that LNP-induced maternal inflammatory responses affect mRNA expression in the maternal compartment and hinder neonatal development. Specifically, pro-inflammatory LNP structures and routes of administration curtailed efficacy in maternal lymphoid organs in an IL-1ß-dependent manner. Further, immunogenic LNPs provoked the infiltration of adaptive immune cells into the placenta and restricted pup growth after birth. Together, our results provide mechanism-based structural guidance on the design of potent LNPs for safe use during pregnancy.


Assuntos
Células Endoteliais , Feto , Lipossomos , Nanopartículas , Feminino , Gravidez , Humanos , Animais , Camundongos , RNA Mensageiro/genética , Cuidado Pré-Natal
9.
Pharmacol Rev ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054072

RESUMO

Our knowledge of the roles of individual cytochrome P450 (P450, CYP) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" of metabolism reactions with new drug candidates. Endogenous biomarkers are being used for non-invasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating inter-species differences in drug metabolism, particularly in the context of "metabolism in safety testing" (MIST) regulatory issues ("disproportionate (human) metabolites"). Significance Statement Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.

10.
Immunol Rev ; 318(1): 37-50, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37548043

RESUMO

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy. However, their use is frequently associated with immune-related adverse events (irAEs) potentially affecting any organ. The mechanisms mediating such irAEs remain poorly understood and biomarkers to predict the development of irAEs are lacking. Growing evidence shows the importance of self-antigens in mediating irAEs during ICI therapy, in particular the well-described melanocyte differentiation antigens in melanoma patients. This review will focus on two novel classes of self-antigens involved in mediating autoimmune skin toxicity and pneumonitis in non-small cell lung cancer patients treated with immunotherapy. T cells specific for these self-antigens are thought to not only mediate irAEs but are thought to simultaneously mediate anti-tumor responses and are therefore associated with both autoimmune toxicity and response to ICI therapy. We further discuss emerging cellular and proteomic immune signatures of irAEs that may serve as biomarkers to help predict which patients are at higher risk of developing these irAEs. The determination of new tumor antigens involved in ICI therapy and the identification of related biomarkers brings us a step forward in the mechanistic understanding of ICIs and will help to monitor patients at higher risk of developing irAEs. Lastly, we discuss the current challenges in collecting research samples for the study of ICI-related mechanisms and in distinguishing between immune signatures of response and those of irAEs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias , Pneumonia , Dermatopatias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Autoimunidade , Proteômica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias/terapia , Autoantígenos , Pneumonia/diagnóstico , Pneumonia/etiologia
11.
Immunol Rev ; 320(1): 58-82, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455333

RESUMO

Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias/terapia , Anticorpos
12.
Annu Rev Pharmacol Toxicol ; 63: 341-358, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36100221

RESUMO

Arsenic is a naturally occurring hazardous element that is environmentally ubiquitous in various chemical forms. Upon exposure, the human body initiates an elimination pathway of progressive methylation into relatively less bioreactive and more easily excretable pentavalent methylated forms. Given its association with decreasing the internal burden of arsenic with ensuing attenuation of its related toxicities, biomethylation has been applauded for decades as a pure route of arsenic detoxification. However, the emergence of detectable trivalent species with profound toxicity has opened a long-standing debate regarding whether arsenic methylation is a detoxifying or bioactivating mechanism. In this review, we approach the topic of arsenic metabolism from both perspectives to create a complete picture of its potential role in the mitigation or aggravation of various arsenic-related pathologies.


Assuntos
Arsênio , Humanos , Arsênio/toxicidade , Metilação
13.
EMBO J ; 41(2): e108591, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34842295

RESUMO

It is still unclear why pathological amyloid deposition initiates in specific brain regions or why some cells or tissues are more susceptible than others. Amyloid deposition is determined by the self-assembly of short protein segments called aggregation-prone regions (APRs) that favour cross-ß structure. Here, we investigated whether Aß amyloid assembly can be modified by heterotypic interactions between Aß APRs and short homologous segments in otherwise unrelated human proteins. Mining existing proteomics data of Aß plaques from AD patients revealed an enrichment in proteins that harbour such homologous sequences to the Aß APRs, suggesting heterotypic amyloid interactions may occur in patients. We identified homologous APRs from such proteins and show that they can modify Aß assembly kinetics, fibril morphology and deposition pattern in vitro. Moreover, we found three of these proteins upon transient expression in an Aß reporter cell line promote Aß amyloid aggregation. Strikingly, we did not find a bias towards heterotypic interactions in plaques from AD mouse models where Aß self-aggregation is observed. Based on these data, we propose that heterotypic APR interactions may play a hitherto unrealized role in amyloid-deposition diseases.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mapas de Interação de Proteínas , Proteoma/metabolismo , Peptídeos beta-Amiloides/química , Células HEK293 , Humanos , Ligação Proteica , Multimerização Proteica , Proteoma/química
14.
J Cell Sci ; 137(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38766715

RESUMO

Although protein aggregation can cause cytotoxicity, such aggregates can also form to mitigate cytotoxicity from misfolded proteins, although the nature of these contrasting aggregates remains unclear. We previously found that overproduction (op) of a three green fluorescent protein-linked protein (3×GFP) induces giant aggregates and is detrimental to growth. Here, we investigated the mechanism of growth inhibition by 3×GFP-op using non-aggregative 3×MOX-op as a control in Saccharomyces cerevisiae. The 3×GFP aggregates were induced by misfolding, and 3×GFP-op had higher cytotoxicity than 3×MOX-op because it perturbed the ubiquitin-proteasome system. Static aggregates formed by 3×GFP-op dynamically trapped Hsp70 family proteins (Ssa1 and Ssa2 in yeast), causing the heat-shock response. Systematic analysis of mutants deficient in the protein quality control suggested that 3×GFP-op did not cause a critical Hsp70 depletion and aggregation functioned in the direction of mitigating toxicity. Artificial trapping of essential cell cycle regulators into 3×GFP aggregates caused abnormalities in the cell cycle. In conclusion, the formation of the giant 3×GFP aggregates itself is not cytotoxic, as it does not entrap and deplete essential proteins. Rather, it is productive, inducing the heat-shock response while preventing an overload to the degradation system.


Assuntos
Proteínas de Fluorescência Verde , Proteínas de Choque Térmico HSP70 , Agregados Proteicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Resposta ao Choque Térmico/genética , Dobramento de Proteína , Ciclo Celular/genética , Adenosina Trifosfatases
15.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38842509

RESUMO

Peptide- and protein-based therapeutics are becoming a promising treatment regimen for myriad diseases. Toxicity of proteins is the primary hurdle for protein-based therapies. Thus, there is an urgent need for accurate in silico methods for determining toxic proteins to filter the pool of potential candidates. At the same time, it is imperative to precisely identify non-toxic proteins to expand the possibilities for protein-based biologics. To address this challenge, we proposed an ensemble framework, called VISH-Pred, comprising models built by fine-tuning ESM2 transformer models on a large, experimentally validated, curated dataset of protein and peptide toxicities. The primary steps in the VISH-Pred framework are to efficiently estimate protein toxicities taking just the protein sequence as input, employing an under sampling technique to handle the humongous class-imbalance in the data and learning representations from fine-tuned ESM2 protein language models which are then fed to machine learning techniques such as Lightgbm and XGBoost. The VISH-Pred framework is able to correctly identify both peptides/proteins with potential toxicity and non-toxic proteins, achieving a Matthews correlation coefficient of 0.737, 0.716 and 0.322 and F1-score of 0.759, 0.696 and 0.713 on three non-redundant blind tests, respectively, outperforming other methods by over $10\%$ on these quality metrics. Moreover, VISH-Pred achieved the best accuracy and area under receiver operating curve scores on these independent test sets, highlighting the robustness and generalization capability of the framework. By making VISH-Pred available as an easy-to-use web server, we expect it to serve as a valuable asset for future endeavors aimed at discerning the toxicity of peptides and enabling efficient protein-based therapeutics.


Assuntos
Proteínas , Proteínas/metabolismo , Proteínas/química , Aprendizado de Máquina , Bases de Dados de Proteínas , Biologia Computacional/métodos , Humanos , Peptídeos/toxicidade , Peptídeos/química , Simulação por Computador , Algoritmos , Software
16.
Mol Cell ; 70(1): 175-187.e8, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576526

RESUMO

Upon stress, cytoplasmic mRNA is sequestered to insoluble ribonucleoprotein (RNP) granules, such as the stress granule (SG). Partially due to the belief that translationally suppressed mRNAs are recruited to SGs in bulk, stress-induced dynamic redistribution of mRNA has not been thoroughly characterized. Here, we report that endoplasmic reticulum (ER) stress targets only a small subset of translationally suppressed mRNAs into the insoluble RNP granule fraction (RG). This subset, characterized by extended length and adenylate-uridylate (AU)-rich motifs, is highly enriched with genes critical for cell survival and proliferation. This pattern of RG targeting was conserved for two other stress types, heat shock and arsenite toxicity, which induce distinct responses in the total cytoplasmic transcriptome. Nevertheless, stress-specific RG-targeting motifs, such as guanylate-cytidylate (GC)-rich motifs in heat shock, were also identified. Previously underappreciated, transcriptome profiling in the RG may contribute to understanding human diseases associated with RNP dysfunction, such as cancer and neurodegeneration.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Estresse do Retículo Endoplasmático , Resposta ao Choque Térmico , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma , Elementos Ricos em Adenilato e Uridilato , Animais , Arsenitos/toxicidade , Sítios de Ligação , Grânulos Citoplasmáticos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Ligação Proteica , Proto-Oncogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Solubilidade , Tapsigargina/toxicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
17.
Mol Cell Proteomics ; 23(7): 100797, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866076

RESUMO

Targeted protein degradation is the selective removal of a protein of interest through hijacking intracellular protein cleanup machinery. This rapidly growing field currently relies heavily on the use of the E3 ligase cereblon (CRBN) to target proteins for degradation, including the immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide which work through a molecular glue mechanism of action with CRBN. While CRBN recruitment can result in degradation of a specific protein of interest (e.g., efficacy), degradation of other proteins (called CRBN neosubstrates) also occurs. Degradation of one or more of these CRBN neosubstrates is believed to play an important role in thalidomide-related developmental toxicity observed in rabbits and primates. We identified a set of 25 proteins of interest associated with CRBN-related protein homeostasis and/or embryo/fetal development. We developed a targeted assay for these proteins combining peptide immunoaffinity enrichment and high-resolution mass spectrometry and successfully applied this assay to rabbit embryo samples from pregnant rabbits dosed with three IMiDs. We confirmed previously reported in vivo decreases in neosubstrates like SALL4, as well as provided evidence of neosubstrate changes for proteins only examined in vitro previously. While there were many proteins that were similarly decreased by all three IMiDs, no compound had the exact same neosubstrate degradation profile as another. We compared our data to previous literature reports of IMiD-induced degradation and known developmental biology associations. Based on our observations, we recommend monitoring at least a major subset of these neosubstrates in a developmental test system to improve CRBN-binding compound-specific risk assessment. A strength of our assay is that it is configurable, and the target list can be readily adapted to focus on only a subset of proteins of interest or expanded to incorporate new findings as additional information about CRBN biology is discovered.

18.
Proc Natl Acad Sci U S A ; 120(22): e2219216120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216514

RESUMO

The assembly of the ß-amyloid peptide (Aß) to form oligomers and fibrils is closely associated with the pathogenesis and progression of Alzheimer's disease. Aß is a shape-shifting peptide capable of adopting many conformations and folds within the multitude of oligomers and fibrils the peptide forms. These properties have precluded detailed structural elucidation and biological characterization of homogeneous, well-defined Aß oligomers. In this paper, we compare the structural, biophysical, and biological characteristics of two different covalently stabilized isomorphic trimers derived from the central and C-terminal regions Aß. X-ray crystallography reveals the structures of the trimers and shows that each trimer forms a ball-shaped dodecamer. Solution-phase and cell-based studies demonstrate that the two trimers exhibit markedly different assembly and biological properties. One trimer forms small soluble oligomers that enter cells through endocytosis and activate capase-3/7-mediated apoptosis, while the other trimer forms large insoluble aggregates that accumulate on the outer plasma membrane and elicit cellular toxicity through an apoptosis-independent mechanism. The two trimers also exhibit different effects on the aggregation, toxicity, and cellular interaction of full-length Aß, with one trimer showing a greater propensity to interact with Aß than the other. The studies described in this paper indicate that the two trimers share structural, biophysical, and biological characteristics with oligomers of full-length Aß. The varying structural, assembly, and biological characteristics of the two trimers provide a working model for how different Aß trimers can assemble and lead to different biological effects, which may help shed light on the differences among Aß oligomers.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Conformação Proteica , Cristalografia por Raios X , Membrana Celular/metabolismo , Fragmentos de Peptídeos/química
19.
Proc Natl Acad Sci U S A ; 120(47): e2312374120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963244

RESUMO

CAR (chimeric antigen receptor) T cell therapy has shown clinical success in treating hematological malignancies, but its treatment of solid tumors has been limited. One major challenge is on-target, off-tumor toxicity, where CAR T cells also damage normal tissues that express the targeted antigen. To reduce this detrimental side-effect, Boolean-logic gates like AND-NOT gates have utilized an inhibitory CAR (iCAR) to specifically curb CAR T cell activity at selected nonmalignant tissue sites. However, the strategy seems inefficient, requiring high levels of iCAR and its target antigen for inhibition. Using a TROP2-targeting iCAR with a single PD1 inhibitory domain to inhibit a CEACAM5-targeting CAR (CEACAR), we observed that the inefficiency was due to a kinetic delay in iCAR inhibition of cytotoxicity. To improve iCAR efficiency, we modified three features of the iCAR-the avidity, the affinity, and the intracellular signaling domains. Increasing the avidity but not the affinity of the iCAR led to significant reductions in the delay. iCARs containing twelve different inhibitory signaling domains were screened for improved inhibition, and three domains (BTLA, LAIR-1, and SIGLEC-9) each suppressed CAR T function but did not enhance inhibitory kinetics. When inhibitory domains of LAIR-1 or SIGLEC-9 were combined with PD-1 into a single dual-inhibitory domain iCAR (DiCARs) and tested with the CEACAR, inhibition efficiency improved as evidenced by a significant reduction in the inhibitory delay. These data indicate that a delicate balance between CAR and iCAR signaling strength and kinetics must be achieved to regulate AND-NOT gate CAR T cell selectivity.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Complexo Ferro-Dextran , Imunoterapia Adotiva , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
20.
J Biol Chem ; 300(3): 105667, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272228

RESUMO

The aggregation of α-Synuclein (α-Syn) into amyloid fibrils is the hallmark of Parkinson's disease. Under stress or other pathological conditions, the accumulation of α-Syn oligomers is the main contributor to the cytotoxicity. A potential approach for treating Parkinson's disease involves preventing the accumulation of these α-Syn oligomers. In this study, we present a novel mechanism involving a conserved group of disorderly proteins known as small EDRK-rich factor (SERF), which promotes the aggregation of α-Syn through a cophase separation process. Using diverse methods like confocal microscopy, fluorescence recovery after photobleaching assays, solution-state NMR spectroscopy, and Western blot, we determined that the N-terminal domain of SERF1a plays a role in the interactions that occur during cophase separation. Within these droplets, α-Syn undergoes a gradual transformation from solid condensates to amyloid fibrils, while SERF1a is excluded from the condensates and dissolves into the solution. Notably, in vivo experiments show that SERF1a cophase separation with α-Syn significantly reduces the deposition of α-Syn oligomers and decreases its cellular toxicity under stress. These findings suggest that SERF1a accelerates the conversion of α-Syn from highly toxic oligomers to less toxic fibrils through cophase separation, thereby mitigating the biological damage of α-Syn aggregation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Amiloide/química , Doença de Parkinson/metabolismo , Separação de Fases , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Fatores de Transcrição , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Células HeLa , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA