Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
BMC Biol ; 21(1): 123, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226244

RESUMO

BACKGROUND: Changes in gene expression levels during brain development are thought to have played an important role in the evolution of human cognition. With the advent of high-throughput sequencing technologies, changes in brain developmental expression patterns, as well as human-specific brain gene expression, have been characterized. However, interpreting the origin of evolutionarily advanced cognition in human brains requires a deeper understanding of the regulation of gene expression, including the epigenomic context, along the primate genome. Here, we used chromatin immunoprecipitation sequencing (ChIP-seq) to measure the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac), both of which are associated with transcriptional activation in the prefrontal cortex of humans, chimpanzees, and rhesus macaques. RESULTS: We found a discrete functional association, in which H3K4me3HP gain was significantly associated with myelination assembly and signaling transmission, while H3K4me3HP loss played a vital role in synaptic activity. Moreover, H3K27acHP gain was enriched in interneuron and oligodendrocyte markers, and H3K27acHP loss was enriched in CA1 pyramidal neuron markers. Using strand-specific RNA sequencing (ssRNA-seq), we first demonstrated that approximately 7 and 2% of human-specific expressed genes were epigenetically marked by H3K4me3HP and H3K27acHP, respectively, providing robust support for causal involvement of histones in gene expression. We also revealed the co-activation role of epigenetic modification and transcription factors in human-specific transcriptome evolution. Mechanistically, histone-modifying enzymes at least partially contribute to an epigenetic disturbance among primates, especially for the H3K27ac epigenomic marker. In line with this, peaks enriched in the macaque lineage were found to be driven by upregulated acetyl enzymes. CONCLUSIONS: Our results comprehensively elucidated a causal species-specific gene-histone-enzyme landscape in the prefrontal cortex and highlighted the regulatory interaction that drove transcriptional activation.


Assuntos
Epigênese Genética , Histonas , Animais , Humanos , Lisina , Macaca mulatta/genética , Córtex Pré-Frontal , Expressão Gênica
2.
Plant J ; 111(4): 1203-1215, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713985

RESUMO

Transcriptional regulation underlies most developmental programs and physiological responses to environmental changes in plants. Transcription factors (TFs) play a key role in the regulation of gene expression by binding specifically to short DNA sequences in the regulatory regions of genes: the TF binding sites (TFBSs). In recent years, several bioinformatic tools have been developed to detect TFBSs in candidate genes, either by de novo prediction or by directly mapping experimentally known TFBSs. However, most of these tools contain information for only a few species or require multi-step procedures, and are not always intuitive for non-experienced researchers. Here we present TFBS-Discovery Tool Hub (TDTHub), a web server for quick and intuitive studies of transcriptional regulation in plants. TDTHub uses pre-computed TFBSs in 40 plant species and allows the choice of two mapping algorithms, providing a higher versatility. Besides the main TFBS enrichment tool, TDTHub includes additional tools to assist in the analysis and visualization of data. In order to demonstrate the effectiveness of TDTHub, we analyzed the transcriptional regulation of the anthocyanin biosynthesis pathway. We also analyzed the transcriptional cascades in response to jasmonate and wounding in Arabidopsis and tomato (Solanum lycopersicum), respectively. In these studies, TDTHub helped to verify the most relevant TF nodes and to propose new ones with a prominent role in these pathways. TDTHub is available at http://acrab.cnb.csic.es/TDTHub/, and it will be periodically upgraded and expanded for new species and gene annotations.


Assuntos
Arabidopsis , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Sítios de Ligação , Biologia Computacional/métodos , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176135

RESUMO

Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.


Assuntos
Vírus de Plantas , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Estresse Fisiológico/genética
4.
BMC Med ; 20(1): 68, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35168626

RESUMO

BACKGROUND: Genome-wide association studies (GWASs) have identified multiple risk loci for Parkinson's disease (PD). However, identifying the functional (or potential causal) variants in the reported risk loci and elucidating their roles in PD pathogenesis remain major challenges. To identify the potential causal (or functional) variants in the reported PD risk loci and to elucidate their regulatory mechanisms, we report a functional genomics study of PD. METHODS: We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) (from neuronal cells and human brain tissues) data and GWAS-identified single-nucleotide polymorphisms (SNPs) in PD risk loci. We then conducted a series of experiments and analyses to validate the regulatory effects of these (i.e., functional) SNPs, including reporter gene assays, allele-specific expression (ASE), transcription factor (TF) knockdown, CRISPR-Cas9-mediated genome editing, and expression quantitative trait loci (eQTL) analysis. RESULTS: We identified 44 SNPs (from 11 risk loci) affecting the binding of 12 TFs and we validated the regulatory effects of 15 TF binding-disrupting SNPs. In addition, we also identified the potential target genes regulated by these TF binding-disrupting SNPs through eQTL analysis. Finally, we showed that 4 eQTL genes of these TF binding-disrupting SNPs were dysregulated in PD cases compared with controls. CONCLUSION: Our study systematically reveals the gene regulatory mechanisms of PD risk variants (including widespread disruption of CTCF binding), generates the landscape of potential PD causal variants, and pinpoints promising candidate genes for further functional characterization and drug development.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Predisposição Genética para Doença/genética , Genômica , Humanos , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética
5.
Mol Biol Rep ; 49(11): 10895-10904, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35941412

RESUMO

Arsenic (As) is a global carcinogenic contaminant, and is one of the significant environmental constraints that limits the development and yield of crop plants. It is always tagged along with rice as rice takes up As and tends to accumulate it in grains. This amassment makes a way for As to get into the food chain that leads to unforeseen human health risks. Being viewed as parallel with toxicity, As in rice is an important global risk that calls for an urgent solution. WRKY Transcription Factors (TFs) seems to be promising in this area. The classical and substantial progress in the molecular mechanism of WRKY TFs, strengthened the understanding of innovative solutions for dealing with As in rice. Here, we review the potential of WRKY TFs under As stressed rice as a genetic solution and also provide insights into As and rice. Further, we develop an understanding of WRKY TF gene family and its regulation in rice. To date, studies on the role of WRKY TFs under As stressed rice are lacking. This area needs to be explored more so that this gene family can be utilized as an effective genetic tool that can break the As cycle to develop low or As free rice cultivar.


Assuntos
Arsênio , Oryza , Humanos , Oryza/genética , Oryza/metabolismo , Fatores de Transcrição/metabolismo , Arsênio/toxicidade , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Filogenia
6.
Biochem Genet ; 59(4): 870-883, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33544297

RESUMO

Chronic lymphocytic leukemia (CLL) is a clonal proliferative disease of mature B lymphocytes. To further improve the prognosis of patients, it is necessary to further elucidate the pathogenesis of CLL and find more effective therapeutic targets. Nuclear Factor of Activated T cells 5 (NFAT5) is the major activated transcription factor (TF) upon osmotic pressure increase in mammalian cells, and it also regulates many target genes to affect various cellular functions. The effects of NFAT5 on tumor growth and metastasis have also been widely revealed. However, the effects of NFAT5 on the progression of CLL are still unclear. In this study, we found abnormally high expression of NFAT5 in human CLL patients. Additionally, NFAT5 depletion suppressed proliferation and stimulated apoptosis of CLL cells. Our data further confirmed NFAT5 regulated AQP5 expression and the phosphorylation of p38 MAPK. We also found that AQP5 overexpression reversed the inhibitory effect of NFAT5 depletion on cell proliferation in CLL cells. Furthermore, we revealed STUB1 directly bound to NFAT5 and promoted its degradation. Taken together, our results indicate the involvement of NFAT5 in CLL progression and suggest that NFAT5 could serve as a promising therapeutic target for CLL treatment.


Assuntos
Aquaporina 5/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Biomarcadores Tumorais/metabolismo , Células Cultivadas , Humanos
7.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066688

RESUMO

Soybean (Glycine max) is an important crop providing oil and protein for both human and animal consumption. Knowing which biological processes take place in specific tissues in a temporal manner will enable directed breeding or synthetic approaches to improve seed quantity and quality. We analyzed a genome-wide transcriptome dataset from embryo, endosperm, endothelium, epidermis, hilum, outer and inner integument and suspensor at the global, heart and cotyledon stages of soybean seed development. The tissue specificity of gene expression was greater than stage specificity, and only three genes were differentially expressed in all seed tissues. Tissues had both unique and shared enriched functional categories of tissue-specifically expressed genes associated with them. Strong spatio-temporal correlation in gene expression was identified using weighted gene co-expression network analysis, with the most co-expression occurring in one seed tissue. Transcription factors with distinct spatiotemporal gene expression programs in each seed tissue were identified as candidate regulators of expression within those tissues. Gene ontology (GO) enrichment of orthogroup clusters revealed the conserved functions and unique roles of orthogroups with similar and contrasting expression patterns in transcript abundance between soybean and Arabidopsis during embryo proper and endosperm development. Key regulators in each seed tissue and hub genes connecting those networks were characterized by constructing gene regulatory networks. Our findings provide an important resource for describing the structure and function of individual soybean seed compartments during early seed development.


Assuntos
Redes Reguladoras de Genes , Glycine max/genética , Sementes/genética , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento
8.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167455

RESUMO

Down-regulator associated protein, DrAp1, acts as a negative cofactor (NC2α) in a transcription repressor complex together with another subunit, down-regulator Dr1 (NC2ß). In binding to promotors and regulating the initiation of transcription of various genes, DrAp1 plays a key role in plant transition to flowering and ultimately in seed production. TaDrAp1 and TaDrAp2 genes were identified, and their expression and genetic polymorphism were studied using bioinformatics, qPCR analyses, a 40K Single nucleotide polymorphism (SNP) microarray, and Amplifluor-like SNP genotyping in cultivars of bread wheat (Triticum aestivum L.) and breeding lines developed from a cross between spelt (T. spelta L.) and bread wheat. TaDrAp1 was highly expressed under non-stressed conditions, and at flowering, TaDrAp1 expression was negatively correlated with yield capacity. TaDrAp2 showed a consistently low level of mRNA production. Drought caused changes in the expression of both TaDrAp1 and TaDrAp2 genes in opposite directions, effectively increasing expression in lower yielding cultivars. The microarray 40K SNP assay and Amplifluor-like SNP marker, revealed clear scores and allele discriminations for TaDrAp1 and TaDrAp2 and TaRht-B1 genes. Alleles of two particular homeologs, TaDrAp1-B4 and TaDrAp2-B1, co-segregated with grain yield in nine selected breeding lines. This indicated an important regulatory role for both TaDrAp1 and TaDrAp2 genes in plant growth, ontogenesis, and drought tolerance in bread and spelt wheat.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética , Triticum/genética , Alelos , Secas , Genes de Plantas/genética , Fosfoproteínas/metabolismo , Melhoramento Vegetal/métodos , Desenvolvimento Vegetal/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sementes , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo
9.
J Integr Plant Biol ; 62(12): 1910-1925, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33405355

RESUMO

Iron (Fe) deficient plants employ multiple strategies to increase root uptake and root-to-shoot translocation of Fe. The identification of genes that are responsible for these processes, and a comprehensive understanding of the regulatory effects of transcriptional networks on their expression, including transcription factors (TFs), is underway in Arabidopsis thaliana. Here, we show that a Histone- or heme-associated proteins (HAP) transcription factor (TF), HAP5A, is necessary for the response to Fe deficiency in Arabidopsis. Its expression was induced under Fe deficiency, and the lack of HAP5A significantly decreased Fe translocation from the root to the shoot, resulting in substantial chlorosis of the newly expanded leaves, compared with the wild-type (WT, Col-0). Further analysis found that the expression of a gene encoding nicotianamine (NA) synthase (NAS1) was dramatically decreased in the hap5a mutant, regardless of the Fe status. Yeast-one-hybrid and ChIP analyses suggested that HAP5A directly binds to the promoter region of NAS1. Moreover, overexpression of NAS1 could rescue the chlorosis phenotype of hap5a in Fe deficient conditions. In summary, a novel pathway was elucidated, showing that NAS1-dependent translocation of Fe from the root to the shoot is controlled by HAP5A in Fe-deficient Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ferro/metabolismo , Fatores de Transcrição/metabolismo , Alquil e Aril Transferases/metabolismo , Regulação da Expressão Gênica de Plantas
10.
J Cell Physiol ; 234(6): 9467-9474, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30370655

RESUMO

In this study, we identified candidate biomarkers for heart failure (HF). The gene expression profile GSE57338, containing 117 ischemic cardiomyopathic HF and 136 control samples, was downloaded and analyzed using various bioinformatics approaches. In total, 376 differentially expressed genes (DEGs) were identified, and four modules were explored in protein-protein interaction networks. DEGs (including ankyrin repeat and SOCS box-containing 14 [ASB14]) in the modules were mainly categorized by the function. Several relationships including interferon regulatory factor 1 (IRF1)-C-C motif chemokine ligand 5 (CCL5) were revealed in the transcription factor microRNA target gene regulatory network. Gene-drug analysis revealed 11 DEGs (such as the cluster of differentiation 163 [CD163]) for the target drugs. Data verification analysis identified 118 overlapping DEGs including ASB14, CD163, and CCL5. ASB14 may be involved in HF progression via protein ubiquitination and CCL5 may be involved in HF via the IRF1-CCL5 interaction. Genes including CD163 are potential biomarkers for HF.


Assuntos
Biomarcadores/metabolismo , Insuficiência Cardíaca/genética , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Componente Principal , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
11.
Int J Mol Sci ; 19(8)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096859

RESUMO

Feed-forward loops (FFLs) represent an important and basic network motif to understand specific biological functions. Cyclic-AMP (cAMP) receptor protein (CRP), a transcription factor (TF), mediates catabolite repression and regulates more than 400 genes in response to changes in intracellular concentrations of cAMP in Escherichia coli. CRP participates in some FFLs, such as araBAD and araFGH operons and adapts to fluctuating environmental nutrients, thereby enhancing the survivability of E. coli. Although computational simulations have been conducted to explore the potential functionality of FFLs, a comprehensive study on the functions of all structural types on the basis of in vivo data is lacking. Moreover, the regulatory role of CRP-mediated FFLs (CRP-FFLs) remains obscure. We identified 393 CRP-FFLs in E. coli using EcoCyc and RegulonDB. Dose⁻response genomic microarray of E. coli revealed dynamic gene expression of each target gene of CRP-FFLs in response to a range of cAMP dosages. All eight types of FFLs were present in CRP regulon with various expression patterns of each CRP-FFL, which were further divided into five functional groups. The microarray and reported regulatory relationships identified 202 CRP-FFLs that were directly regulated by CRP in these eight types of FFLs. Interestingly, 34% (147/432) of genes were directly regulated by CRP and CRP-regulated TFs, which indicates that these CRP-regulated genes were also regulated by other CRP-regulated TFs responding to environmental signals through CRP-FFLs. Furthermore, we applied gene ontology annotation to reveal the biological functions of CRP-FFLs.


Assuntos
Proteína Receptora de AMP Cíclico/genética , AMP Cíclico/genética , Transcrição Gênica , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Dosagem de Genes/genética , Regulação Bacteriana da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes/genética , Genoma Bacteriano/genética , MicroRNAs/genética , Anotação de Sequência Molecular , Análise Serial de Proteínas
12.
Planta ; 246(3): 453-469, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28474114

RESUMO

MAIN CONCLUSION: ABP9 , encoding a bZIP transcription factor from maize, enhances tolerance to multiple stresses and may participate in the ABA signaling pathway in transgenic cotton by altering physiological and biochemical processes and stress-related gene expression. Abiotic stresses, such as soil salinity and drought, negatively affect growth, development, and yield in cotton. Gene ABP9, which encodes a bZIP transcription factor, binds to the abscisic acid (ABA)-responsive-element (ABRE2) motif of the maize catalase1 gene. Its expression significantly improves tolerance in Arabidopsis to multiple abiotic stresses, but little is known about its role in cotton. In the present study, the ABP9 gene was introduced into upland cotton (Gossypium hirsutum L.) cultivar R15 by Agrobacterium tumefaciens-mediated transformation, and 12 independent transgenic cotton lines were obtained. Cotton plants over-expressing ABP9 have enhanced tolerance to salt and osmotic stress. Under stress, they developed better root systems in a greenhouse and higher germination, reduced stomatal aperture, and stomatal density in a growth chamber. Under drought conditions, survival rate and relative water content (RWC) of transgenic cotton were higher than those of R15 plants. Under salt and osmotic stresses, chlorophyll, proline, and soluble sugar contents significantly increased in transgenic cotton leaves and the malondialdehyde (MDA) content was lower than in R15. Overexpression of ABP9 also enhanced oxidative stress tolerance, reduced cellular levels of reactive oxygen species (ROS) through increased activities of antioxidative enzymes, and alleviated oxidative damage to cell. Interestingly, ABP9 over-expressing cotton was more sensitive to exogenous ABA than R15 at seed germination, root growth, stomatal aperture, and stomatal density. Moreover, ABP9 overexpression upregulated significantly the transcription levels of stress-related genes such as GhDBP2, GhNCED2, GhZFP1, GhERF1, GhHB1, and GhSAP1 under salt treatment. Conjointly, these results showed that overexpression of ABP9 conferred enhanced tolerance to multiple abiotic stresses in cotton. The stress-tolerant transgenic lines provide valuable resources for cotton breeding.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Gossypium/genética , Plantas Tolerantes a Sal/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Desidratação/genética , Desidratação/metabolismo , Gossypium/metabolismo , Gossypium/fisiologia , Estresse Oxidativo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Zea mays/genética
13.
Biochem Biophys Res Commun ; 464(1): 176-81, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26116530

RESUMO

Seed germination is a crucial stage for plant development and agricultural production. To investigate its complex regulation process, the RNA-Seq study of rice embryo was conducted at three time points of 0, 12 and 48 h post imbibition (HPI). Dynamic transcriptional alterations were observed, especially in the early stage (0-12 HPI). Seed related genes, especially those encoding desiccation inducible proteins and storage reserves in embryo, decreased drastically after imbibition. The expression profiles of phytohormone related genes indicated distinct roles of abscisic acid (ABA), gibberellin (GA) and brassinosteroid (BR) in germination. Moreover, network analysis revealed the importance of protein phosphorylation in phytohormone interactions. Network and gene ontology (GO) analyses suggested that transcription factors (TFs) played a regulatory role in functional transitions during germination, and the enriched TF families at 0 HPI implied a regulation of epigenetic modification in dry seeds. In addition, 35 germination-specific TF genes in embryo were identified and seven genes were verified by qRT-PCR. Besides, enriched TF binding sites (TFBSs) supported physiological changes in germination. Overall, this study expands our comprehensive knowledge of multiple regulation factors underlying rice seed germination.


Assuntos
Regulação da Expressão Gênica de Plantas , Germinação/genética , Oryza/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Sementes/genética , Ácido Abscísico/metabolismo , Brassinosteroides/metabolismo , Difusão , Epigênese Genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Giberelinas/metabolismo , Anotação de Sequência Molecular , Oryza/embriologia , Oryza/metabolismo , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Sementes/embriologia , Sementes/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Água/metabolismo , Molhabilidade
14.
Sci Rep ; 14(1): 11670, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778047

RESUMO

Colorectal cancer (CRC) arises via the progressive accumulation of dysregulation in key genes including oncogenes and tumor-suppressor genes. Prostaglandin-endoperoxide synthase 2 (PTGS2, also called COX2) acts as an oncogenic driver in CRC. Here, we explored the upstream transcription factors (TFs) responsible for elevating PTGS2 expression in CRC cells. The results showed that PTGS2 silencing repressed cell growth, migration and invasion in HCT116 and SW480 CRC cells. The two fragments (499-981 bp) and (1053-1434 bp) were confirmed as the core TF binding profiles of the PTGS2 promoter. PTGS2 expression positively correlated with RUNX1 level in colon adenocarcinoma (COAD) samples using the TCGA-COAD dataset. Furthermore, RUNX1 acted as a positive regulator of PTGS2 expression by promoting transcriptional activation of the PTGS2 promoter via the 1086-1096 bp binding motif. In conclusion, our study demonstrates that PTGS2 upregulation induced by the TF RUNX1 promotes CRC cell growth, migration and invasion, providing an increased rationale for the use of PTGS2 inhibitors in CRC prevention and treatment.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Subunidade alfa 2 de Fator de Ligação ao Core , Ciclo-Oxigenase 2 , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Regiões Promotoras Genéticas , Regulação para Cima , Humanos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Movimento Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Células HCT116
15.
Front Plant Sci ; 15: 1284997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379954

RESUMO

Faba bean (Vicia faba) is a legume grown in diverse climate zones with a high potential for increased cultivation and use in food due to its nutritional seeds. In this study, we characterized seed tissue development in faba bean to identify key developmental processes; from embryo expansion at the expense of the endosperm to the maturing storage stages of the bean seed. A spatio-temporal transcriptome profiling analysis, combined with chemical nutrient analysis of protein, starch, and lipid, of endosperm and embryo tissues at different developmental stages, revealed gene expression patterns, transcriptional networks, and biochemical pathways in faba bean. We identified key players in the LAFL (LEC1, ABI3, FUS3, and LEC2) transcription factor network as well as their major repressors VAL1 and ASIL1. Our results showed that proteins accumulated not only in the embryo but also in the endosperm. Starch accumulated throughout seed development and oil content increased during seed development but at very low levels. The patterns of differentially expressed transcripts encoding proteins with functions in the corresponding metabolic pathways for the synthesis of these storage compounds, to a high extent, aligned with these findings. However, the early expression of transcripts encoding WRI1 combined with the late expression of oil body proteins indicated a not manifested high potential for lipid biosynthesis and oil storage. Altogether, this study contributes to increased knowledge regarding seed developmental processes applicable to future breeding methods and seed quality improvement for faba bean.

16.
Genome Biol ; 25(1): 3, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167104

RESUMO

The majority of disease-associated variants identified through genome-wide association studies are located outside of protein-coding regions. Prioritizing candidate regulatory variants and gene targets to identify potential biological mechanisms for further functional experiments can be challenging. To address this challenge, we developed FORGEdb ( https://forgedb.cancer.gov/ ; https://forge2.altiusinstitute.org/files/forgedb.html ; and https://doi.org/10.5281/zenodo.10067458 ), a standalone and web-based tool that integrates multiple datasets, delivering information on associated regulatory elements, transcription factor binding sites, and target genes for over 37 million variants. FORGEdb scores provide researchers with a quantitative assessment of the relative importance of each variant for targeted functional experiments.


Assuntos
Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Ligação Proteica , Polimorfismo de Nucleotídeo Único
17.
Methods Mol Biol ; 2594: 133-141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264493

RESUMO

Transcription factors (TFs) play a cardinal role in the development and maintenance of human physiology by acting as mediators of gene expression and cell state control. Recent advancements have broadened our knowledge on the potency of TFs in governing cell physiology and have deepened our understanding of the mechanisms through which they exert this control. The ability of TFs to program cell fates has gathered significant interest in recent decades, and high-throughput technologies now allow for the systematic discovery of forward programming factors to convert pluripotent stem cells into numerous differentiated cell types. The next generation of these technologies has the potential to improve our understanding and control of cell fates and states and provide advanced therapeutic modalities to address many medical conditions.


Assuntos
Células-Tronco Pluripotentes , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Células-Tronco Pluripotentes/metabolismo
18.
Genome Biol ; 24(1): 60, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991439

RESUMO

BACKGROUND: Maize (Zea mays L.) is one of the most important crops worldwide. Although sophisticated maize gene regulatory networks (GRNs) have been constructed for functional genomics and phenotypic dissection, a multi-omics GRN connecting the translatome and transcriptome is lacking, hampering our understanding and exploration of the maize regulatome. RESULTS: We collect spatio-temporal translatome and transcriptome data and systematically explore the landscape of gene transcription and translation across 33 tissues or developmental stages of maize. Using this comprehensive transcriptome and translatome atlas, we construct a multi-omics GRN integrating mRNAs and translated mRNAs, demonstrating that translatome-related GRNs outperform GRNs solely using transcriptomic data and inter-omics GRNs outperform intra-omics GRNs in most cases. With the aid of the multi-omics GRN, we reconcile some known regulatory networks. We identify a novel transcription factor, ZmGRF6, which is associated with growth. Furthermore, we characterize a function related to drought response for the classic transcription factor ZmMYB31. CONCLUSIONS: Our findings provide insights into spatio-temporal changes across maize development at both the transcriptome and translatome levels. Multi-omics GRNs represent a useful resource for dissection of the regulatory mechanisms underlying phenotypic variation.


Assuntos
Transcriptoma , Zea mays , Zea mays/genética , Multiômica , Redes Reguladoras de Genes , Fatores de Transcrição/genética
19.
J Thorac Dis ; 15(12): 6996-7012, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38249888

RESUMO

Background: Transcription factors (TFs) play a crucial role in the occurrence and progression of lung adenocarcinoma (LUAD), and targeting TFs is an important direction for treating LUAD. However, targeting a single TF often fails to achieve satisfactory therapeutic outcomes. Furthermore, the regulatory TF-target gene networks involved in the development of LUAD is complex and not yet fully understood. Methods: In this study, we performed RNA sequencing (RNA-seq) to analyze the transcriptome profile of human LUAD tissues and matched adjacent nontumor tissues. We selected the differentially expressed TFs, performed enrichment analysis and survival curve analysis, and predicted the regulatory networks of the top differential TFs with their target genes. Finally, alternative splicing analyses were also performed. Results: We found that TFs GRHL3, SIX1, SIX2, SPDEF, and ETV4 were upregulated, while TAL1, EPAS1, SOX17, NR4A1, and EGR3 were significantly downregulated in LUAD tissues compared to normal tissues. We propose a potential GRHL3-CDH15-Wnt-ß-catenin pro-oncogenic signaling axis and a potential TAL1-ADAMTS1-vascular antioncogenic signaling axis. In addition, we found that alternative splicing of intron retention (IR), approximate IR (XIR), multi-IR (MIR), approximate MIR (XMIR), and approximate alternative exon ends (XAE) showed abnormally increased frequencies in LUAD tissues. Conclusions: These findings revealed a novel TF-target gene regulatory axis related to tumorigenesis and provided potential therapeutic targets and mechanisms for LUAD.

20.
Trends Cell Biol ; 33(5): 365-373, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36182534

RESUMO

Gamete (sperm and oocyte) genomes are transcriptionally silent until embryonic genome activation (EGA) following fertilization. EGA in humans had been thought to occur around the eight-cell stage, but recent findings suggest that it is triggered in one-cell embryos, by fertilization. Phosphorylation and other post-translational modifications during fertilization may instate transcriptionally favorable chromatin and activate oocyte-derived transcription factors (TFs) to initiate EGA. Expressed genes lay on cancer-associated pathways and their identities predict upregulation by MYC and other cancer-associated TFs. One interpretation of this is that the onset of EGA, and the somatic cell trajectory to cancer, are mechanistically related: cancer initiates epigenetically. We describe how fertilization might be linked to the initiation of EGA and involve distinctive processes recapitulated in cancer.


Assuntos
Embrião de Mamíferos , Sêmen , Animais , Masculino , Humanos , Sêmen/metabolismo , Embrião de Mamíferos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma , Ativação Transcricional , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mamíferos/genética , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA