Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Phycol ; 59(2): 418-431, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36798977

RESUMO

By combining physiological/biochemical and transcriptional analysis, the inhibition and recovery mechanisms of Phaeodactylum tricornutum in response to extreme high light stress (1300 µmol photons · m-2  · s-1 ) were elucidated. The population growth was inhibited in the first 24 h and started to recover from 48 h. At 24 h, photoinhibition was exhibited as the changes of PSII photosynthetic parameters and decrease in cellular pigments, corresponding to the downregulation of genes encoding light-harvesting complex and pigments synthesis. Changes in those photosynthetic parameters and genes were kept until 96 h, indicating that the decrease of light absorption abilities might be one strategy for photoacclimation. In the meanwhile, we observed elevated cellular ROS levels, dead cells proportions, and upregulation of genes encoding antioxidant materials and proteasome pathway at 24 h. Those stress-related parameters and genes recovered to the controls at 96 h, indicating a stable intracellular environment after photoacclimation. Finally, genes involving carbon metabolisms were upregulated from 24 to 96 h, which ensured the energy supply for keeping high base and nucleotide excision repair abilities, leading to the recovery of cell cycle progression. We concluded that P. tricornutum could overcome photoinhibition by decreasing light-harvesting abilities, enhancing carbon metabolisms, activating anti-oxidative functions, and elevating repair abilities. The parameters of light harvesting, carbon metabolisms, and repair processes were responsible for the recovery phase, which could be considered long-term adaptive strategies for diatoms under high light stress.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Fotossíntese/fisiologia , Carbono/metabolismo
2.
Curr Issues Mol Biol ; 44(9): 4118-4131, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36135194

RESUMO

Melanoma is a lethal form of skin cancer. Immunotherapeutic agents such as anti-PD-1 (pembrolizumab and nivolumab) and anti-CTLA-4 (ipilimumab) have revolutionized melanoma treatment; however, drug resistance is rapidly acquired. Several studies have reported an increase in melanoma rates in older patients. Thus, the impact of ageing on transcriptional profiles of melanoma and response to immunotherapy is essential to understand. In this study, the bioinformatic analysis of RNA seq data of old and young melanoma patients receiving immunotherapy identifies the significant upregulation of extra-cellular matrix and cellular adhesion genes in young cohorts, while genes involved in cell proliferation, inflammation, non-canonical Wnt signaling and tyrosine kinase receptor ROR2 are significantly upregulated in the old cohort. Several Treg signature genes as well as transcription factors that are associated with dysfunctional T cell tumor infiltration are differentially expressed. The differential expression of several genes involved in oxidative phosphorylation, glycolysis and glutamine metabolism is also observed. Taken together, this study provides novel findings on the impact of ageing on transcriptional changes in melanoma, and novel therapeutic targets for future studies.

3.
BMC Plant Biol ; 22(1): 44, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062884

RESUMO

BACKGROUND: Rice is highly sensitive to chilling stress during the seedling stage. However, the adaptable photo-thermo sensitive genic male sterile (PTGMS) rice line, Yu17S, exhibits tolerance to low temperatures. Currently, the molecular characteristics of Yu17S are unclear. RESULTS: To evaluate the molecular mechanisms behind cold responses in rice seedlings, a comparative transcriptome analysis was performed in Yu17S during seedling development under normal temperature and low temperature conditions. In total, 9317 differentially expressed genes were detected. Gene ontology and pathway analyses revealed that these genes were involved mostly in photosynthesis, carotenoid biosynthesis, carbohydrate metabolism and plant hormone signal transduction. An integrated analysis of specific pathways combined with physiological data indicated that rice seedlings improved the performance of photosystem II when exposed to cold conditions. Genes involved in starch degradation and sucrose metabolism were activated in rice plants exposed to cold stress treatments, which was accompanied by the accumulation of soluble sugar, trehalose, raffinose and galactinol. Furthermore, chilling stress induced the expression of phytoene desaturase, 15-cis-ζ-carotene isomerase, ζ-carotene desaturase, carotenoid isomerase and ß-carotene hydroxylase; this was coupled with the activation of carotenoid synthase activity and increases in abscisic acid (ABA) levels in rice seedlings. CONCLUSIONS: Our results suggest that Yu17S exhibited better tolerance to cold stress with the activation of carotenoid synthase activity and increasing of ABA levels, and as well as the expression of photosynthesis-related genes under cold condition in rice seedlings.


Assuntos
Resposta ao Choque Frio/fisiologia , Oryza/fisiologia , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Carotenoides/metabolismo , Resposta ao Choque Frio/genética , Enzimas/genética , Enzimas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Oryza/genética , Fotossíntese , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Infertilidade das Plantas , Plântula/genética , Plântula/fisiologia , Amido/genética , Amido/metabolismo , Sacarose/metabolismo
4.
Pediatr Dev Pathol ; 25(1): 59-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168420

RESUMO

Ependymomas (EPN) are commonly encountered brain tumors in the pediatric population. They may arise in the supratentorial compartment, posterior fossa and spinal cord. Histopathologic grading of EPN has always been challenging with poor interobserver reproducibility and lack of correlation between histologic grade and patient outcomes. Recent studies have highlighted that, despite histopathological similarities among variants of EPN at different anatomical sites, they possess site-specific genetic and epigenetic alterations, transcriptional profiles and DNA copy number variations. This has led to a molecular and location-based classification for EPN which has been adopted by the World Health Organization Classification of Central Nervous System Tumors and more accurately risk-stratifies patients than histopathologic grading alone. Given the complexity of this evolving field, the purpose of this paper is to offer a practical approach to the diagnosis of EPN, including the selection of the most appropriate molecular surrogate immunohistochemical stains, basic molecular studies and more sophisticated techniques if needed. The goal is to reach a rapid, sound diagnosis, providing essential information regarding prognosis and guiding clinical decision-making.


Assuntos
Neoplasias Encefálicas , Ependimoma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Criança , Variações do Número de Cópias de DNA , Ependimoma/diagnóstico , Ependimoma/genética , Humanos , Prognóstico , Reprodutibilidade dos Testes
5.
Ecotoxicol Environ Saf ; 223: 112597, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34365213

RESUMO

Quercetin is reported to be beneficial to or pose hazards to the health of animals, the inconsistence remains to be recognized and debated. This work was conducted to understand the neuroprotective or neurotoxic properties of quercetin, and investigate the different action mechanisms between low- and high-level quercetin. Therefore, we evaluated brain oxidative stress and monoamine neurotransmitters in adult zebrafish (Danio rerio) after exposure to 1 and 1000 µg/L quercetin. In addition, the brain transcriptional profiles were analyzed to identify genes and pathways that were differentially regulated in the brains. The results of oxidative stress and neurotransmitters suggest that low-level quercetin might be beneficial to nervous system, while high-level quercetin might exert detrimental effects. Furthermore, transcriptional profiles also suggested different toxic mechanisms occurred between low- and high-level quercetin. At 1 µg/L quercetin, enrichment analysis of differently expressed genes (DEGs) revealed that the fanconi anemia pathway might be an important mechanism in neuroprotective effects. At 1000 µg/L quercetin, the up-regulated DEGs were enriched in many Gene Ontology (GO) terms related to neuronal synapses, indicating potential neuroprotective effects; however, enrichment of up-regulated DEGs in GO terms of response to stimulus and the MAPK signaling pathway was also found, which indicated increases of stress. Notably, at 1000 µg/L quercetin, the down-regulated DEGs were enriched in several GO terms related to the proteostasis and the proteasome pathway, indicating impairment of proteasome functions which was involved in neurodegenerative diseases. Moreover, several hub genes involved in the pathology of neurodegenerative diseases were identified by Protein-protein interaction analysis at 1000 µg/L quercetin. Thus, high-level quercetin might pose potential risk inducing neurodegenerative diseases, which should receive more attention in the future. Additionally, our findings may provide awareness to society and researchers about toxicity possibilities of phytochemicals on wildlife and human.


Assuntos
Fármacos Neuroprotetores , Peixe-Zebra , Animais , Encéfalo , Perfilação da Expressão Gênica , Humanos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Quercetina/farmacologia , Peixe-Zebra/genética
6.
Zygote ; 29(6): 503-506, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33883049

RESUMO

The relative mRNA abundance of 10 genes associated with folliculogenesis was compared between late preantral (secondary) and early antral (tertiary) ovarian follicles in goats. In total, 100 follicles in each category were mechanically isolated. The relative transcript abundance of the mRNAs were determined by qPCR. Data were analyzed using unpaired Student's t-test. Of the 10 tested genes, ABLIM mRNA was not detected in either follicle category, six genes (SLIT3, TYMS, GTPBP1, AKR1C4, PIK3R6, and MAOB) were upregulated in secondary follicles compared with tertiary follicles, and three genes (ARHGEF12, CLEC6A, and CYTL1) showed similar mRNA abundances in both secondary and tertiary follicles. In conclusion, SLIT3, GTPBP1, AKR1C4, and PIK3R6 mRNA abundance was upregulated in secondary follicles (preantral phase) compared with in tertiary follicles (antral phase) in goats.


Assuntos
Cabras , Folículo Ovariano , Animais , Feminino , Cabras/genética , RNA Mensageiro/genética
7.
Cell Biol Toxicol ; 36(1): 1-3, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32008122

RESUMO

Single-cell biomedicine, a new merging discipline of cell biology and medicine to improve the life quality of patients, gains high priority in cell biology and toxicology. Single-cell nuclear elements are specially focused and headlined to understand regulatory mechanisms by which transcriptional factors, DNA elements, and genome organization interact with each other and contribute to the developmental evolution and dynamic formation of genotoxicity. Cell molecular phenomics, clonal genotypes, and structural metamorphoses during the cell cycle at single-cell level provide deep insights to understanding mechanism-based bridges between cell biology and toxicology, between cell sensitive and resistance, and between chronic diseases and cancer.


Assuntos
Pesquisa Biomédica/tendências , Núcleo Celular/metabolismo , Análise de Célula Única/tendências , Ciclo Celular , Núcleo Celular/genética , DNA/metabolismo , Genoma , Humanos , Análise de Célula Única/métodos , Fatores de Transcrição
8.
BMC Bioinformatics ; 20(1): 66, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30727942

RESUMO

BACKGROUND: Harmonization techniques make different gene expression profiles and their sets compatible and ready for comparisons. Here we present a new bioinformatic tool termed Shambhala for harmonization of multiple human gene expression datasets obtained using different experimental methods and platforms of microarray hybridization and RNA sequencing. RESULTS: Unlike previously published methods enabling good quality data harmonization for only two datasets, Shambhala allows conversion of multiple datasets into the universal form suitable for further comparisons. Shambhala harmonization is based on the calibration of gene expression profiles using the auxiliary standardization dataset. Each profile is transformed to make it similar to the output of microarray hybridization platform Affymetrix Human Gene. This platform was chosen because it has the biggest number of human gene expression profiles deposited in public databases. We evaluated Shambhala ability to retain biologically important features after harmonization. The same four biological samples taken in multiple replicates were profiled independently using three and four different experimental platforms, respectively, then Shambhala-harmonized and investigated by hierarchical clustering. CONCLUSION: Our results showed that unlike other frequently used methods: quantile normalization and DESeq/DESeq2 normalization, Shambhala harmonization was the only method supporting sample-specific and platform-independent biologically meaningful clustering for the data obtained from multiple experimental platforms.


Assuntos
Software , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Reprodutibilidade dos Testes
9.
BMC Plant Biol ; 18(1): 79, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728055

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in plant growth and stress responses. Studies of lncRNAs in non-model plants are quite limited, especially those investigating multiple dehydration stresses. In this study, we identified novel lncRNAs and analyzed their functions in dehydration stress memory in switchgrass, an excellent biofuel feedstock and soil-conserving plant in the Gramineae family. RESULTS: We analyzed genome-wide transcriptional profiles of leaves of 5-week-old switchgrass plantlets grown via tissue culture after primary and secondary dehydration stresses (D1 and D2) and identified 16,551 novel lncRNAs, including 4554 annotated lncRNAs (targeting 3574 genes), and 11,997 unknown lncRNAs. Gene ontology and pathway enrichment analysis of annotated genes showed that the differentially expressed lncRNAs were related to abscisic acid (ABA) and ethylene (ETH) biosynthesis and signal transduction, and to starch and sucrose metabolism. The upregulated lncRNAs and genes were related to ABA synthesis and its signal transduction, and to trehalose synthesis. Meanwhile, lncRNAs and genes related to ETH biosynthesis and signal transduction were suppressed. LncRNAs and genes involved in ABA metabolism were verified using quantitative real-time PCR, and the endogenous ABA content was determined via high performance liquid chromatography mass spectrometry (HPLC-MS). These results showed that ABA accumulated significantly during dehydration stress, especially in D2. Furthermore, we identified 307 dehydration stress memory lncRNAs, and the ratios of different memory types in switchgrass were similar to those in Arabidopsis and maize. CONCLUSIONS: The molecular responses of switchgrass lncRNAs to multiple dehydration stresses were researched systematically, revealing novel information about their transcriptional regulatory behavior. This study provides new insights into the response mechanism to dehydration stress in plants. The lncRNAs and pathways identified in this study provide valuable information for genetic modification of switchgrass and other crops.


Assuntos
Panicum/fisiologia , RNA Longo não Codificante/genética , Ácido Abscísico/metabolismo , Desidratação , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Panicum/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA Longo não Codificante/fisiologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Amido/metabolismo , Sacarose/metabolismo , Transcriptoma
10.
World J Microbiol Biotechnol ; 35(1): 1, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30535777

RESUMO

In this study, we examined the dynamics of phenotypic and transcriptional profiles in Saccharomyces cerevisiae following semi-lethal X-ray irradiation. Post-irradiation, reproductive death was revealed as the predominant form of death in S. cerevisiae and almost all the irradiated cells were physically present and intact. In addition, cell cycle arrest reached its peak and cell division was at its valley at 2 h. Cell cycle arrest, cell division potential, DNA damage, and mitochondrial transmembrane potential (MTP) showed significant recovery at 4 h (P > 0.05 vs. control). The improvements of DNA damage and MTP decrease were evaluated as at least 77% and 84% for the original irradiated cells at 4 h, respectively. In the transcriptional profile, the amount of differentially expressed genes (DEGs) and the fold change in the repair-related DEGs were highest at 1 h post-irradiation and then decreased. The DEGs at 1 h (but not 2 h or 3 h) were significantly enriched in gene ontology (GO) categories of detoxification (up) and antioxidant activity (up). Although the transcriptional profile supported the repair time frame observed in the phenotypic profile, the complete repair may take a longer duration as the transcriptional levels of several important repair-related DEGs did not show a decrease and the DNA repair-related pathways (up) were the major enriched pathway in Kyoto Encyclopaedia of Genes and Genomes pathway analysis throughout the whole course of the study. These results provide an important reference for the selection of key time points in further studies.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/efeitos da radiação , Estresse Fisiológico , Raios X , Divisão Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Perfilação da Expressão Gênica , Membranas Mitocondriais/efeitos da radiação , Fatores de Tempo , Transcrição Gênica
11.
Physiol Genomics ; 49(10): 549-566, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887370

RESUMO

Bioaccumulative environmental estrogen, nonylphenol (NP; 4-nonylphenol), is widely used as a nonionic surfactant and can affect human health. Since genomes of Saccharomyces cerevisiae and higher eukaryotes share many structural and functional similarities, we investigated subcellular effects of NP on S. cerevisiae BY4742 cells by analyzing genome-wide transcriptional profiles. We examined effects of low (1 mg/l; <15% cell number reduction) and high (5 mg/l; >65% cell number reduction) inhibitory concentration exposures for 120 or 180 min. After 120 and 180 min of 1 mg/l NP exposure, 187 (63 downregulated, 124 upregulated) and 103 genes (56 downregulated, 47 upregulated), respectively, were differentially expressed. Similarly, 678 (168 repressed, 510 induced) and 688 genes (215 repressed, 473 induced) were differentially expressed in cells exposed to 5 mg/l NP for 120 and 180 min, respectively. Only 15 downregulated and 63 upregulated genes were common between low and high NP inhibitory concentration exposure for 120 min, whereas 16 downregulated and 31 upregulated genes were common after the 180-min exposure. Several processes/pathways were prominently affected by either low or high inhibitory concentration exposure, while certain processes were affected by both inhibitory concentrations, including ion transport, response to chemicals, transmembrane transport, cellular amino acids, and carbohydrate metabolism. While minimal expression changes were observed with low inhibitory concentration exposure, 5 mg/l NP treatment induced substantial expression changes in genes involved in oxidative phosphorylation, cell wall biogenesis, ribosomal biogenesis, and RNA processing, and encoding heat shock proteins and ubiquitin-conjugating enzymes. Collectively, these results provide considerable information on effects of NP at the molecular level.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Fenóis/toxicidade , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Aminoácidos/biossíntese , Cobre/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Genoma Fúngico , Glicogênio/genética , Glicogênio/metabolismo , Ferro/metabolismo , NAD/genética , NAD/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Fenóis/administração & dosagem , Fosfatos/metabolismo , Pirimidinas/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
BMC Dev Biol ; 17(1): 16, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29228898

RESUMO

BACKGROUND: Over one third of all animal phyla utilize a mode of early embryogenesis called 'spiral cleavage' to divide the fertilized egg into embryonic cells with different cell fates. This mode is characterized by a series of invariant, stereotypic, asymmetric cell divisions (ACDs) that generates cells of different size and defined position within the early embryo. Astonishingly, very little is known about the underlying molecular machinery to orchestrate these ACDs in spiral-cleaving embryos. Here we identify, for the first time, cohorts of factors that may contribute to early embryonic ACDs in a spiralian embryo. RESULTS: To do so we analyzed stage-specific transcriptome data in eggs and early embryos of the spiralian annelid Platynereis dumerilii for the expression of over 50 candidate genes that are involved in (1) establishing cortical domains such as the partitioning defective (par) genes, (2) directing spindle orientation, (3) conveying polarity cues including crumbs and scribble, and (4) maintaining cell-cell adhesion between embryonic cells. In general, each of these cohorts of genes are co-expressed exhibiting high levels of transcripts in the oocyte and fertilized single-celled embryo, with progressively lower levels at later stages. Interestingly, a small number of key factors within each ACD module show different expression profiles with increased early zygotic expression suggesting distinct regulatory functions. In addition, our analysis discovered several highly co-expressed genes that have been associated with specialized neural cell-cell recognition functions in the nervous system. The high maternal contribution of these 'neural' adhesion complexes indicates novel general adhesion functions during early embryogenesis. CONCLUSIONS: Spiralian embryos are champions of ACD generating embryonic cells of different size with astonishing accuracy. Our results suggest that the molecular machinery for ACD is already stored as maternal transcripts in the oocyte. Thus, the spiralian egg can be viewed as a totipotent yet highly specialized cell that evolved to execute fast and precise ACDs during spiral cleaving stages. Our survey identifies cohorts of factors in P. dumerilii that are candidates for these molecular mechanisms and their regulation, and sets the stage for a functional dissection of ACD in a spiral-cleaving embryo.


Assuntos
Anelídeos/citologia , Anelídeos/genética , Divisão Celular Assimétrica/fisiologia , Poliquetos/genética , Animais , Divisão Celular Assimétrica/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma/genética
13.
Curr Genet ; 63(2): 253-274, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27460658

RESUMO

Bisphenol A (BPA), an endocrine disrupting chemical, is used as a monomer in the production of epoxy resins and polycarbonates, and as a plasticizer in polyvinyl chloride. As such, it is produced in large quantities worldwide and continuously leaches into the environment. To capture the genome reprogramming in eukaryotic cells under BPA exposure, here, we used Saccharomyces cerevisiae as model organism and analyzed the genome-wide transcriptional profiles of S. cerevisiae BY4742 in response to BPA, focusing on two exposure scenarios: (1) exposure to a low inhibition concentration (50 mg/L; resulting in <10 % inhibition in cell number) and (2) a high inhibition concentration (300 mg/L; resulting in >70 % inhibition in cell number). Based on the transcriptional profiling analyses, 81 genes were repressed and 104 genes were induced in response to 50 mg/L BPA. Meanwhile, 378 genes were downregulated and 606 genes were significantly upregulated upon exposure to 300 mg/L BPA. While similar processes were affected by exposure to distinct BPA concentrations, including mitochondrial processes, nucleobase-containing small molecule metabolic processes, transcription from the RNA polymerase II promoter, and mitosis and associated processes, the number and magnitude of differentially expressed genes differ between low and high inhibition concentration treatments. For example, exposure to 300 mg/L BPA resulted in severe changes in the expression levels of several genes involved in oxidative phosphorylation, the tricarboxylic acid cycle, ribosomal activity, replication, and chemical responses. Conversely, only slight changes were observed in the expression of genes involved in these processes in cells exposed to 50 mg/L BPA. These results demonstrate that yeast cells respond to BPA in a concentration-dependent manner at the transcriptional level via different genes and provide insight into the molecular mechanisms underlying the modes of action of BPA.


Assuntos
Compostos Benzidrílicos/toxicidade , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Fenóis/toxicidade , Saccharomyces cerevisiae/genética , Transcriptoma/efeitos dos fármacos , Poluentes Ocupacionais do Ar/toxicidade , Relação Dose-Resposta a Droga , Ontologia Genética , Genes Fúngicos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
14.
Arch Insect Biochem Physiol ; 92(4): 259-73, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27087161

RESUMO

In this study, the cDNAs of five cytochromes P450 genes (named CYP345P1, CYP358B1, CYP4FD2, CYP4CD2, and CYP6JN1) contained open reading frames from 1,500 to 1,554 nucleotides that encoded 499 to 517 amino acids were cloned from the psocid Liposcelis entomophila. They are characterized by predicted molecular weights from 57.67 to 59.64 kDa and theoretical isoelectric points of 5.57-9.07. Quantitative real-time PCR analysis showed these five genes were expressed at all tested developmental stages and higher expressions were observed in adults. CYP358B1 was expressed at higher levels in egg and adult compared to the larval stages. mRNA abundances of five genes were detected in both sexes and were relatively more abundant in adult females than in adult males. Synergism bioassay showed that the synergic ratio was 2.20 and 2.45 when insects were treated with the mixture of deltamethrin or malathion with the synergist piperonyl butoxide (PBO). Because PBO induces cytochrome P450s in some insects, this suggested to us that cytochromes P450 might participate in detoxification of these insecticides. The transcripts of the five cytochromes P450 genes in adult psocids could be induced to the highest level at 12 h after the exposure to malathion. After exposure to deltamethrin, CYP358B1 reached maximum expression at 24 h. The maximum expression of the other four genes occurred at 36 h. Treatments with the carbamate propoxur did not influence transcription of the cytochromes P450 gene. The induction profiles suggested that these five cytochrome P450 genes may be associated with deltamethrin and malathion metabolism in psocids.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Insetos/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Insetos/classificação , Insetos/efeitos dos fármacos , Insetos/crescimento & desenvolvimento , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Malation/farmacologia , Masculino , Nitrilas/farmacologia , Óvulo/efeitos dos fármacos , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , Sinergistas de Praguicidas/farmacologia , Filogenia , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
Acta Biochim Biophys Sin (Shanghai) ; 48(9): 795-803, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27325823

RESUMO

Jasmonates (JAs) are recognized as essential regulators in response to environmental stimuli and plant development. Carrot is an Apiaceae vegetable with great value and undergoes significant size changes over the course of plant growth. However, JA accumulation and its potential roles in carrot growth remain unclear. Here, methyl JA (MeJA) levels and expression profiles of JA-related genes were analyzed in carrot roots and leaves at five developmental stages. MeJA levels in the roots and leaves were the highest at the first stage and decreased as carrot growth proceeded. Transcript levels of several JA-related genes (Dc13-LOX1, Dc13-LOX2, DcAOS, DcAOC, DcOPR2, DcOPR3, DcOPCL1, DcJAR1, DcJMT, DcCOI1, DcJAZ1, DcJAZ2, DcMYC2, DcCHIB/PR3, DcLEC, and DcVSP2) were not well correlated with MeJA accumulation during carrot root and leaf development. In addition, some JA-related genes (DcJAR1, DcJMT, DcCOI1, DcMYC2, and DcVSP2) showed differential expression between roots and leaves. These results suggest that JAs may regulate carrot plant growth in stage-dependent and organ-specific manners. Our work provides novel insights into JA accumulation and its potential roles during carrot growth and development.


Assuntos
Ciclopentanos/metabolismo , Daucus carota/genética , Daucus carota/metabolismo , Genes de Plantas , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/genética , Acetatos/metabolismo , Daucus carota/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais/genética
16.
Plant Cell Physiol ; 56(3): 481-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524069

RESUMO

Arthrospira (Spirulina) platensis is a well-known commercial cyanobacterium that is used as a food and in feed supplements. In this study, we examined the physiological changes and whole-genome expression in A. platensis C1 exposed to high temperature. We found that photosynthetic activity was significantly decreased after the temperature was shifted from 35°C to 42°C for 2 h. A reduction in biomass production and protein content, concomitant with the accumulation of carbohydrate content, was observed after prolonged exposure to high temperatures for 24 h. Moreover, the results of the expression profiling in response to high temperature at the designated time points (8 h) revealed two distinct phases of the responses. The first was the immediate response phase, in which the transcript levels of genes involved in different mechanisms, including genes for heat shock proteins; genes involved in signal transduction and carbon and nitrogen metabolism; and genes encoding inorganic ion transporters for magnesium, nitrite and nitrate, were either transiently induced or repressed by the high temperature. In the second phase, the long-term response phase, both the induction and repression of the expression of genes with important roles in translation and photosynthesis were observed. Taken together, the results of our physiological and transcriptional studies suggest that dynamic changes in the transcriptional profiles of these thermal-responsive genes might play a role in maintaining cell homeostasis under high temperatures, as reflected in the growth and biochemical composition, particularly the protein and carbohydrate content, of A. platensis C1.


Assuntos
Temperatura Alta , Spirulina/genética , Spirulina/fisiologia , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Carboidratos/análise , Carbono/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Genes Bacterianos , Lipídeos/análise , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Fotossíntese/genética , Transdução de Sinais/genética , Spirulina/crescimento & desenvolvimento , Estresse Fisiológico/genética
17.
Cell Genom ; 4(1): 100463, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38216284

RESUMO

In animal cells, molecular pathways often comprise families of variant components, such as ligands or receptors. These pathway components are differentially expressed by different cell types, potentially tailoring pathway function to cell context. However, it has remained unclear how pathway expression profiles are distributed across cell types and whether similar profiles can occur in dissimilar cell types. Here, using single-cell gene expression datasets, we identified pathway expression motifs, defined as recurrent expression profiles that are broadly distributed across diverse cell types. Motifs appeared in core pathways, including TGF-ß, Notch, Wnt, and the SRSF splice factors, and involved combinatorial co-expression of multiple components. Motif usage was weakly correlated between pathways in adult cell types and during dynamic developmental transitions. Together, these results suggest a mosaic view of cell type organization, in which different cell types operate many of the same pathways in distinct modes.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética
18.
Fish Shellfish Immunol ; 35(2): 334-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23669649

RESUMO

Toll-like receptors (TLRs) are well-characterized pattern recognition receptors of innate immunity, known to induce immune responses against the pathogens by interacting with evolutionarily conserved pathogen-associated molecular patterns (PAMPs). In this study, a novel TLR homolog from disk abalone (Haliotis discus discus) was identified and characterized at molecular level. The open reading frame (ORF) of AbTLR is 3804 bp in length and encodes a 1268 amino acid peptide with a calculated molecular mass of 143.5 kDa. The deduced protein shows typical TLR domain architecture, with leucine rich repeats (LRR) and the toll-interleukin receptor (TIR) domain. Phylogenetic analysis revealed a close evolutionary relationship for AbTLR to its invertebrate counterparts, with close clustering to the molluscan homologs. Quantitative real-time PCR detected ubiquitous transcription of AbTLR in healthy tissues, but with highest levels in hemocytes. Differential transcriptional modulation of AbTLR was observed in abalone hemocytes and gills upon immune challenge, whereby Vibrio parahaemolyticus and purified lipopolysaccharide (LPS) enhanced the transcript level prominently. In addition, the viral hemorrhagic septicemia virus induced AbTLR transcription in hemocytes and gills, representing the first evidence of viral-induced immune response in mollusks to date. Collectively, our findings support a putative role for AbTLR in abalone antiviral and antibacterial defense.


Assuntos
Regulação da Expressão Gênica , Caramujos/genética , Receptores Toll-Like/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , DNA Complementar/metabolismo , Lipopolissacarídeos/fisiologia , Dados de Sequência Molecular , Novirhabdovirus/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , República da Coreia , Alinhamento de Sequência/veterinária , Caramujos/imunologia , Caramujos/metabolismo , Distribuição Tecidual , Receptores Toll-Like/química , Receptores Toll-Like/imunologia , Vibrio parahaemolyticus/fisiologia
19.
Insects ; 14(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37504628

RESUMO

Crop plants have coevolved phytohormone-mediated defenses to combat and/or repel their colonizers. The present study determined the effects of jasmonic acid (JA) accumulation during aphid infestation on the preference and performance of Sitobion miscanthi Takahashi (Hemiptera: Aphididae), and its potential role in fine-tuning hormone-dependent responses in XN979 wheat cultivar seedlings was evaluated via the transcriptional profiles of marker genes related to JA- and salicylic acid (SA)-dependent responses. The preference experiment and the life table data reveal that direct foliage spraying of 2.5 mM methyl jasmonate (MeJA) exhibited weak negative or positive effects on the preferential selection and the population dynamics and oviposition parameters of S. miscanthi. The transcription level of phytohormone biosynthesis genes shows that foliage spraying of MeJA significantly upregulated the marker genes in the JA biosynthesis pathway while downregulating the SA pathway. In addition, either MeJA treatment or previous aphid infestation significantly induced upregulated transcription of the genes involved in the JA- and SA-dependent defense responses, and the transcription level of the tryptophan decarboxylase (TaTDC) gene, which facilitates the conversion of L-tryptophan to tryptamine, was rapidly upregulated after the treatments as well. The main products of tryptamine conversion could play a crucial role in suppressing SA-dependent defense responses. These results will provide more experimental evidence to enable understanding of the antagonistic interaction between hormone signaling processes in cereals under aphid infestation.

20.
Schizophr Bull ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156676

RESUMO

BACKGROUND AND HYPOTHESIS: Schizotypy has been conceptualized as a continuum of symptoms with marked genetic, neurobiological, and sensory-cognitive overlaps to schizophrenia. Hierarchical organization represents a general organizing principle for both the cortical connectome supporting sensation-to-cognition continuum and gene expression variability across the cortex. However, a mapping of connectome hierarchy to schizotypy remains to be established. Importantly, the underlying changes of the cortical connectome hierarchy that mechanistically link gene expressions to schizotypy are unclear. STUDY DESIGN: The present study applied novel connectome gradient on resting-state fMRI data from 1013 healthy young adults to investigate schizotypy-associated sensorimotor-to-transmodal connectome hierarchy and assessed its similarity with the connectome hierarchy of schizophrenia. Furthermore, normative and differential postmortem gene expression data were utilized to examine transcriptional profiles linked to schizotypy-associated connectome hierarchy. STUDY RESULTS: We found that schizotypy was associated with a compressed functional connectome hierarchy. Moreover, the pattern of schizotypy-related hierarchy exhibited a positive correlation with the connectome hierarchy observed in schizophrenia. This pattern was closely colocated with the expression of schizophrenia-related genes, with the correlated genes being enriched in transsynaptic, receptor signaling and calcium ion binding. CONCLUSIONS: The compressed connectome hierarchy suggests diminished functional system differentiation, providing a novel and holistic system-level basis for various sensory-cognition deficits in schizotypy. Importantly, its linkage with schizophrenia-altered hierarchy and schizophrenia-related gene expression yields new insights into the neurobiological continuum of psychosis. It also provides mechanistic insight into how gene variation may drive alterations in functional hierarchy, mediating biological vulnerability of schizotypy to schizophrenia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA