Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell Commun Signal ; 22(1): 128, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360757

RESUMO

In pathologies including cancer, aberrant Transforming Growth Factor-ß (TGF-ß) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-ß responses. Betaglycan/type III TGF-ß receptor (TßRIII), is an established co-receptor for the TGF-ß superfamily known to bind directly to TGF-ßs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-ß signaling and the cells' responses to exogenous TGF-ß ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-ß signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-ß signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-ß signaling responses. Dysregulated shedding of TGF-ß receptors plays a vital role in determining the response and availability of TGF-ßs', which is crucial for prognostic predictions and understanding of TGF-ß signaling dynamics.


Assuntos
Glicosaminoglicanos , Neoplasias Ovarianas , Humanos , Feminino , Glicosaminoglicanos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Heparitina Sulfato/metabolismo
2.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628642

RESUMO

Mice feed with coffee polyphenols (CPP, chlorogenic acid) and milk fat globule membrane (MFGM) has increased survival rates and helps retain long-term memory. In the cerebral cortex of aged mice, CPP intake decreased the expression of the proinflammatory cytokine TNF-α, and lysosomal enzyme cathepsin B. The suppression of inflammation in the brain during aging was thought to result in the suppression of the repressor element 1-silencing transcription factor (REST) and prevention of brain aging. In contrast, CPP increased the expression of REST, cAMP-responsive element binding (CREB) and transforming growth factor ß1 (TGF-ß1) in the young hippocampus. The increased expression of these factors may contribute to the induction of neuronal differentiation and the suppression of memory decline with aging. Taken together, these results suggest that CPP increases CREB in the young hippocampus and suppresses inflammation in the old brain, resulting in a preventive effect on brain aging. The endotoxin levels were not elevated in the serum of aged mice. Although the mechanism of action of MFGM has not yet been elucidated, the increase in survival rate with both CPP and MFGM intake suggests that adding milk to coffee may improve not only the taste, but also the function.


Assuntos
Ácido Clorogênico , Polifenóis , Animais , Encéfalo , Ácido Clorogênico/farmacologia , Café , Glicolipídeos , Glicoproteínas , Inflamação , Gotículas Lipídicas , Camundongos , Polifenóis/farmacologia
3.
J Biol Chem ; 295(16): 5404-5418, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32075906

RESUMO

Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor ß superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor ß superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen-antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Simulação de Acoplamento Molecular , Miostatina/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Humanos , Miostatina/antagonistas & inibidores , Miostatina/imunologia , Ligação Proteica , Estabilidade Proteica
4.
J Biol Chem ; 295(13): 4171-4180, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32071084

RESUMO

Systemic scleroderma (SSc) is an autoimmune disease that affects over 2.5 million people globally. SSc results in dysfunctional connective tissues with excessive profibrotic signaling, affecting skin, cardiovascular, and particularly lung tissue. Over three-quarters of individuals with SSc develop pulmonary fibrosis within 5 years, the main cause of SSc mortality. No approved medicines to manage lung SSc currently exist. Recent research suggests that profibrotic signaling by transforming growth factor ß (TGF-ß) is directly tied to SSc. Previous studies have also shown that ubiquitin E3 ligases potently control TGF-ß signaling through targeted degradation of key regulatory proteins; however, the roles of these ligases in SSc-TGF-ß signaling remain unclear. Here we utilized primary SSc patient lung cells for high-throughput screening of TGF-ß signaling via high-content imaging of nuclear translocation of the profibrotic transcription factor SMAD family member 2/3 (SMAD2/3). We screened an RNAi library targeting ubiquitin E3 ligases and observed that knockdown of the E3 ligase Kelch-like protein 42 (KLHL42) impairs TGF-ß-dependent profibrotic signaling. KLHL42 knockdown reduced fibrotic tissue production and decreased TGF-ß-mediated SMAD activation. Using unbiased ubiquitin proteomics, we identified phosphatase 2 regulatory subunit B'ϵ (PPP2R5ϵ) as a KLHL42 substrate. Mechanistic experiments validated ubiquitin-mediated control of PPP2R5ϵ stability through KLHL42. PPP2R5ϵ knockdown exacerbated TGF-ß-mediated profibrotic signaling, indicating a role of PPP2R5ϵ in SSc. Our findings indicate that the KLHL42-PPP2R5ϵ axis controls profibrotic signaling in SSc lung fibroblasts. We propose that future studies could investigate whether chemical inhibition of KLHL42 may ameliorate profibrotic signaling in SSc.


Assuntos
Proteína Fosfatase 2/genética , Escleroderma Sistêmico/genética , Proteína Smad2/genética , Fator de Crescimento Transformador beta/genética , Ubiquitina-Proteína Ligases/genética , Fibroblastos/metabolismo , Fibrose/genética , Fibrose/patologia , Humanos , Pulmão/citologia , Pulmão/metabolismo , Proteólise , Proteômica , Escleroderma Sistêmico/patologia , Transdução de Sinais/genética
5.
J Biol Chem ; 295(27): 9105-9120, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32371398

RESUMO

Modification of the transforming growth factor ß (TGF-ß) signaling components by (de)ubiquitination is emerging as a key regulatory mechanism that controls cell signaling responses in health and disease. Here, we show that the deubiquitinating enzyme UBH-1 in Caenorhabditis elegans and its human homolog, ubiquitin C-terminal hydrolase-L1 (UCH-L1), stimulate DAF-7/TGF-ß signaling, suggesting that this mode of regulation of TGF-ß signaling is conserved across animal species. The dauer larva-constitutive C. elegans phenotype caused by defective DAF-7/TGF-ß signaling was enhanced and suppressed, respectively, by ubh-1 deletion and overexpression in the loss-of-function genetic backgrounds of daf7, daf-1/TGF-ßRI, and daf4/R-SMAD, but not of daf-8/R-SMAD. This suggested that UBH-1 may stimulate DAF-7/TGF-ß signaling via DAF-8/R-SMAD. Therefore, we investigated the effect of UCH-L1 on TGF-ß signaling via its intracellular effectors, i.e. SMAD2 and SMAD3, in mammalian cells. Overexpression of UCH-L1, but not of UCH-L3 (the other human homolog of UBH1) or of the catalytic mutant UCH-L1C90A, enhanced TGF-ß/SMAD-induced transcriptional activity, indicating that the deubiquitination activity of UCH-L1 is indispensable for enhancing TGF-ß/SMAD signaling. We also found that UCH-L1 interacts, deubiquitinates, and stabilizes SMAD2 and SMAD3. Under hypoxia, UCH-L1 expression increased and TGF-ß/SMAD signaling was potentiated in the A549 human lung adenocarcinoma cell line. Notably, UCH-L1-deficient A549 cells were impaired in tumorigenesis, and, unlike WT UCH-L1, a UCH-L1 variant lacking deubiquitinating activity was unable to restore tumorigenesis in these cells. These results indicate that UCH-L1 activity supports DAF-7/TGF-ß signaling and suggest that UCH-L1's deubiquitination activity is a potential therapeutic target for managing lung cancer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Carcinogênese/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Caenorhabditis elegans , Transformação Celular Neoplásica , Enzimas Desubiquitinantes , Larva/metabolismo , Pulmão/metabolismo , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Ubiquitina Tiolesterase/fisiologia , Ubiquitinação
6.
J Biol Chem ; 295(27): 9033-9051, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32409577

RESUMO

Cytochrome P450 1A1 (CYP1A1) catalyzes the metabolic activation of polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P) and is transcriptionally regulated by the aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) complex upon exposure to PAHs. Accordingly, inhibition of CYP1A1 expression reduces production of carcinogens from PAHs. Although transcription of the CYP1A1 gene is known to be repressed by transforming growth factor-ß (TGF-ß), how TGF-ß signaling is involved in the suppression of CYP1A1 gene expression has yet to be clarified. In this study, using mammalian cell lines, along with shRNA-mediated gene silencing, CRISPR/Cas9-based genome editing, and reporter gene and quantitative RT-PCR assays, we found that TGF-ß signaling dissociates the B[a]P-mediated AhR/ARNT heteromeric complex. Among the examined Smads, Smad family member 3 (Smad3) strongly interacted with both AhR and ARNT via its MH2 domain. Moreover, hypoxia-inducible factor 1α (HIF-1α), which is stabilized upon TGF-ß stimulation, also inhibited AhR/ARNT complex formation in the presence of B[a]P. Thus, TGF-ß signaling negatively regulated the transcription of the CYP1A1 gene in at least two different ways. Of note, TGF-ß abrogated DNA damage in B[a]P-exposed cells. We therefore conclude that TGF-ß may protect cells against carcinogenesis because it inhibits CYP1A1-mediated metabolic activation of PAHs as part of its anti-tumorigenic activities.


Assuntos
Citocromo P-450 CYP1A1/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células A549 , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Benzo(a)pireno/toxicidade , Células COS , Chlorocebus aethiops , Citocromo P-450 CYP1A1/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/fisiologia
7.
J Biol Chem ; 295(24): 8236-8251, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32358062

RESUMO

The cytokine content in tissue microenvironments shapes the functional capacity of a T cell. This capacity depends on the integration of extracellular signaling through multiple receptors, including the T-cell receptor (TCR), co-receptors, and cytokine receptors. Transforming growth factor ß (TGF-ß) signals through its cognate receptor, TGFßR, to SMAD family member proteins and contributes to the generation of a transcriptional program that promotes regulatory T-cell differentiation. In addition to transcription, here we identified specific signaling networks that are regulated by TGFßR. Using an array of biochemical approaches, including immunoblotting, kinase assays, immunoprecipitation, and flow cytometry, we found that TGFßR signaling promotes the formation of a SMAD3/4-protein kinase A (PKA) complex that activates C-terminal Src kinase (CSK) and thereby down-regulates kinases involved in proximal TCR activation. Additionally, TGFßR signaling potentiated CSK phosphorylation of the P85 subunit in the P85-P110 phosphoinositide 3-kinase (PI3K) heterodimer, which reduced PI3K activity and down-regulated the activation of proteins that require phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) for their activation. Moreover, TGFßR-mediated disruption of the P85-P110 interaction enabled P85 binding to a lipid phosphatase, phosphatase and tensin homolog (PTEN), aiding in the maintenance of PTEN abundance and thereby promoting elevated PtdIns(4,5)P2 levels in response to TGFßR signaling. Taken together, these results highlight that TGF-ß influences the trajectory of early T-cell activation by altering PI3K activity and PtdIns levels.


Assuntos
Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosfatidilinositóis/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Ativação Enzimática , Estabilidade Enzimática , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Multimerização Proteica , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/metabolismo , Proteína Smad4/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo
8.
Adv Exp Med Biol ; 1278: 205-227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33523450

RESUMO

Uveitis is a chronic disease with relapsing and remitting ocular attack, which requires corticosteroids and systemic immunosuppression to prevent severe vision loss. Classically, uveitis is referred to an autoimmune disease, mediated by pro-inflammatory Th17 cells and immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs). More and more evidence indicates that Tregs are involved in development, resolution, and remission of uveitis. Clinically, many researchers have conducted quantitative and functional analyses of peripheral blood from patients with different subtypes of uveitis, in an attempt to find the changing rules of Tregs. Consistently, using the experimental autoimmune uveitis (EAU) model, researchers have explored the development and resolution mechanism of uveitis in many aspects. In addition, many drug and Tregs therapy investigations have yielded encouraging results. In this chapter, we introduced the current understanding of Tregs, summarized the clinical changes in the number and function of patients with uveitis and the immune mechanism of Tregs involved in EAU model, as well as discussed the progress and shortcomings of Tregs-related drug therapy and Tregs therapy. Although the exact mechanism of Tregs-mediated uveitis protection remains to be elucidated, the strategy of Tregs regulation may provide a specific and meaningful way for the prevention and treatment of uveitis.


Assuntos
Doenças Autoimunes , Uveíte , Fatores de Transcrição Forkhead , Humanos , Tolerância Imunológica , Linfócitos T Reguladores , Células Th17
9.
J Biol Chem ; 294(21): 8361-8370, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30894415

RESUMO

KGF-1 plays an important role in the wound healing process. Loss of the KGF-1 gene in diabetic mice attenuated the process of wound contraction, suggesting that KGF-1 contributes to wound contraction. However, the mechanism remains unclear. To investigate the role of KGF-1 in diabetic wound contraction, we established a keratinocyte-fibroblast co-culture system. Concentrations of transforming growth factor ß1 (TGF-ß1) in conditioned supernatant treated with KGF-1 (KGF-1 group), tk;4KGF-1-neutralizing antibody (anti-KGF-1 group), TGF-ß1 (TGF-ß1tk;1 group), KGF-1 and TGF-ß1-neutralizing antibody (KGF-1 + anti-TGF-ß1 group) were tested by ELISA. Conditioned medium was added to fibroblast-populated collagen lattice (FPCL) to investigate the effect of KGF-1 on fibroblastqj contraction. TGF-ß1, Col-I, p-Smad2, p-Smad3, and α-smooth muscle actin (α-SMA) were examined by Western blotting. A diabetic rat wound model was utilized to evaluate wound morphology, histology, immunohistochemistry, and protein expression in wound tissue after treatment with KGF-1. ELISA assays revealed that the concentration of TGF-ß1 in the conditioned supernatant in the KGF-1 group was significantly higher. The contractile capacity of FPCL stimulated by conditioned medium derived from the KGF-1 group was significantly elevated; however, the contractile activity of FPCL induced by KGF-1 was attenuated by TGF-ß1-neutralizing antibody. The Western blot results suggest that KGF-1 is able to stimulate TGF-ß1 activation with increased Col-I, p-Smad2, p-Smad3, and α-SMA expression. Diabetic wounds treated with KGF-1 had a higher degree of contraction with significantly higher expression of TGF-ß1, Col-I, p-Smad2, p-Smad3, and α-SMA. Our findings demonstrate that KGF-1 promotes fibroblast contraction and accelerates wound contraction via the TGF-ß1/Smad signaling pathway in a double-paracrine manner.


Assuntos
Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização , Animais , Linhagem Celular , Meios de Cultivo Condicionados , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Fator 7 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
10.
J Biol Chem ; 294(42): 15466-15479, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31481467

RESUMO

Smad proteins are transcriptional regulators activated by TGF-ß. They are known to bind to two distinct Smad-responsive motifs, namely the Smad-binding element (SBE) (5'-GTCTAGAC-3') and CAGA motifs (5'-AGCCAGACA-3' or 5'-TGTCTGGCT-3'). However, the mechanisms by which these motifs promote Smad activity are not fully elucidated. In this study, we performed DNA CASTing, binding assays, ChIP sequencing, and quantitative RT-PCR to dissect the details of Smad binding and function of the SBE and CAGA motifs. We observed a preference for Smad3 to bind CAGA motifs and Smad4 to bind SBE, and that either one SBE or a triple-CAGA motif forms a cis-acting functional half-unit for Smad-dependent transcription activation; combining two half-units allows efficient activation. Unexpectedly, the extent of Smad binding did not directly correlate with the abilities of Smad-binding sequences to induce gene expression. We found that Smad proteins are more tolerant of single bp mutations in the context of the CAGA motifs, with any mutation in the SBE disrupting function. CAGA and CAGA-like motifs but not SBE are widely distributed among stimulus-dependent Smad2/3-binding sites in normal murine mammary gland epithelial cells, and the number of CAGA and CAGA-like motifs correlates with fold-induction of target gene expression by TGF-ß. These data, demonstrating Smad responsiveness can be tuned by both sequence and number of repeats, provide a compelling explanation for why CAGA motifs are predominantly used for Smad-dependent transcription activation in vivo.


Assuntos
Proteína Smad3/química , Proteína Smad3/metabolismo , Proteína Smad4/química , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Sítios de Ligação , Humanos , Ligação Proteica , Elementos de Resposta , Proteína Smad2/química , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad4/genética , Ativação Transcricional
11.
J Biol Chem ; 294(13): 4966-4980, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30718277

RESUMO

Transforming growth factor (TGF)-ß signaling in humans is stringently regulated to prevent excessive TGF-ß signaling. In tumors, TGF-ß signaling can both negatively and positively regulate tumorigenesis dependent on tumor type, but the reason for these opposite effects is unclear. TGF-ß signaling is mainly mediated via the Smad-dependent pathway, and herein we found that PDZK1-interacting protein 1 (PDZK1IP1) interacts with Smad4. PDZK1IP1 inhibited both the TGF-ß and the bone morphogenetic protein (BMP) pathways without affecting receptor-regulated Smad (R-Smad) phosphorylation. Rather than targeting R-Smad phosphorylation, PDZK1IP1 could interfere with TGF-ß- and BMP-induced R-Smad/Smad4 complex formation. Of note, PDZK1IP1 retained Smad4 in the cytoplasm of TGF-ß-stimulated cells. To pinpoint PDZK1IP1's functional domain, we created several PDZK1IP1 variants and found that its middle region, from Phe40 to Ala49, plays a key role in its Smad4-regulating activity. PDZK1IP1 knockdown enhanced the expression of the TGF-ß target genes Smad7 and prostate transmembrane protein androgen-induced (TMEPAI) upon TGF-ß stimulation. In contrast, PDZK1IP1 overexpression suppressed TGF-ß-induced reporter activities, cell migration, and cell growth inhibition. In a xenograft tumor model in which TGF-ß was previously shown to elicit tumor-promoting effects, PDZK1IP1 gain of function decreased tumor size and increased survival rates. Taken together, these findings indicate that PDZK1IP1 interacts with Smad4 and thereby suppresses the TGF-ß signaling pathway.


Assuntos
Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , Camundongos Endogâmicos BALB C , Fosforilação
12.
Cancer Sci ; 111(11): 3985-3992, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32888236

RESUMO

Most cancers harbor a small population of highly tumorigenic cells known as cancer stem cells (CSCs). Because of their stem cell-like properties and resistance to conventional therapies, CSCs are considered to be a rational target for curable cancer treatment. However, despite recent advances in CSC research, CSC-targeted therapies are not as successful as was initially hoped. The proliferative, invasive, and drug-resistant properties of CSCs are regulated by the tumor microenvironment associated with them, the so-called CSC niche. Thus, targeting tumor-promoting cellular crosstalk between CSCs and their niches is an attractive avenue for developing durable therapies. Using mouse models of squamous cell carcinoma (SCC), we have demonstrated that tumor cells responding to transforming growth factor ß (TGF-ß) function as drug-resistant CSCs. The gene expression signature of TGF-ß-responding tumor cells has accelerated the identification of novel pathways that drive invasive tumor progression. Moreover, by focusing on the cytokine milieu and macrophages in the proximity of TGF-ß-responding tumor cells, we recently uncovered the molecular basis of a CSC-niche interaction that emerges during early tumor development. This review article summarizes the specialized tumor microenvironment associated with CSCs and discusses mechanisms by which malignant properties of CSCs are maintained and promoted.


Assuntos
Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco , Microambiente Tumoral , Animais , Biomarcadores Tumorais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/terapia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
13.
J Biol Chem ; 293(16): 5766-5780, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507095

RESUMO

Tendon is a dense connective tissue that transmits high mechanical forces from skeletal muscle to bone. The transcription factor scleraxis (Scx) is a highly specific marker of both precursor and mature tendon cells (tenocytes). Mice lacking scx exhibit a specific and virtually complete loss of tendons during development. However, the functional contribution of Scx to wound healing in adult tendon has not yet been fully characterized. Here, using ScxGFP-tracking and loss-of-function systems, we show in an adult mouse model of Achilles tendon injury that paratenon cells, representing a stem cell antigen-1 (Sca-1)-positive and Scx-negative progenitor subpopulation, display Scx induction, migrate to the wound site, and produce extracellular matrix (ECM) to bridge the defect, whereas resident tenocytes exhibit a delayed response. Scx induction in the progenitors is initiated by transforming growth factor ß (TGF-ß) signaling. scx-deficient mice had migration of Sca-1-positive progenitor cell to the lesion site but impaired ECM assembly to bridge the defect. Mechanistically, scx-null progenitors displayed higher chondrogenic potential with up-regulation of SRY-box 9 (Sox9) coactivator PPAR-γ coactivator-1α (PGC-1α) in vitro, and knock-in analysis revealed that forced expression of full-length scx significantly inhibited Sox9 expression. Accordingly, scx-null wounds formed cartilage-like tissues that developed ectopic ossification. Our findings indicate a critical role of Scx in a progenitor-cell lineage in wound healing of adult mouse tendon. These progenitor cells could represent targets in strategies to facilitate tendon repair. We propose that this lineage-regulatory mechanism in tissue progenitors could apply to a broader set of tissues or biological systems in the body.


Assuntos
Tendão do Calcâneo/citologia , Tendão do Calcâneo/fisiopatologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco/citologia , Traumatismos dos Tendões/fisiopatologia , Cicatrização , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Movimento Celular , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Deleção de Genes , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/patologia , Traumatismos dos Tendões/genética , Traumatismos dos Tendões/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transgenes
14.
J Biol Chem ; 293(27): 10547-10560, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29773652

RESUMO

Interactions between cells in the stroma and epithelium facilitate prostate stem cell activity and tissue regeneration capacity. Numerous molecular signal transduction pathways, including the induction of sonic hedgehog (Shh) to activate the Gli transcription factors, are known to mediate the cross-talk of these two cellular compartments. However, the details of how these signaling pathways regulate prostate stem and progenitor cell activity remain elusive. Here we demonstrate that, although cell-autonomous epithelial Shh-Gli signaling is essential to determine the expression levels of basal cell markers and the renewal potential of epithelial stem and progenitor cells, stromal Gli signaling regulates prostate stem and progenitor cell activity by increasing the number and size of prostate spheroids in vitro Blockade of stromal Gli signaling also inhibited prostate tissue regeneration in vivo The inhibition of stromal Gli signaling suppressed the differentiation of basal and progenitor cells to luminal cells and limited prostate tubule secretory capability. Additionally, stromal cells were able to compensate for the deficiency of epithelial Shh signaling in prostate tissue regeneration. Mechanistically, suppression of Gli signaling increased the signaling factor transforming growth factor ß (TGFß) in stromal cells. Elevation of exogenous TGFß1 levels inhibited prostate spheroid formation, suggesting that a stromal Gli-TGFß signaling axis regulates the activity of epithelial progenitor cells. Our study illustrates that Gli signaling regulates epithelial stem cell activity and renewal potential in both epithelial and stromal compartments.


Assuntos
Diferenciação Celular , Próstata/citologia , Próstata/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Células Estromais/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células Estromais/citologia , Fator de Crescimento Transformador beta/metabolismo , Proteína GLI1 em Dedos de Zinco/genética
15.
J Biol Chem ; 293(41): 15867-15886, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30108174

RESUMO

Transforming growth factor-ß (TGFß) signaling through SMAD2/3 is an important driver of pathological fibrosis in multiple organ systems. TGFß signaling and extracellular matrix (ECM) stiffness form an unvirtuous pathological circuit in which matrix stiffness drives activation of latent TGFß, and TGFß signaling then drives cellular stress and ECM synthesis. Moreover, ECM stiffness also appears to sensitize cells to exogenously activated TGFß through unknown mechanisms. Here, using human fibroblasts, we explored the effect of ECM stiffness on a putative inner nuclear membrane protein, LEM domain-containing protein 3 (LEMD3), which is physically connected to the cell's actin cytoskeleton and inhibits TGFß signaling. We showed that LEMD3-SMAD2/3 interactions are inversely correlated with ECM stiffness and TGFß-driven luciferase activity and that LEMD3 expression is correlated with the mechanical response of the TGFß-driven luciferase reporter. We found that actin polymerization but not cellular stress or LEMD3-nuclear-cytoplasmic couplings were necessary for LEMD3-SMAD2/3 interactions. Intriguingly, LEMD3 and SMAD2/3 frequently interacted in the cytosol, and we discovered LEMD3 was proteolytically cleaved into protein fragments. We confirmed that a consensus C-terminal LEMD3 fragment binds SMAD2/3 in a stiffness-dependent manner throughout the cell and is sufficient for antagonizing SMAD2/3 signaling. Using human lung biopsies, we observed that these nuclear and cytosolic interactions are also present in tissue and found that fibrotic tissues exhibit locally diminished and cytoplasmically shifted LEMD3-SMAD2/3 interactions, as noted in vitro Our work reveals novel LEMD3 biology and stiffness-dependent regulation of TGFß by LEMD3, providing a novel target to antagonize pathological TGFß signaling.


Assuntos
Mecanotransdução Celular/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Lâmina Nuclear/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteína Fosfatase 2C/metabolismo , Proteína Smad2/antagonistas & inibidores , Proteína Smad2/química , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/química , Fator de Crescimento Transformador beta/antagonistas & inibidores
16.
J Biol Chem ; 293(42): 16528-16545, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30166344

RESUMO

The epithelial-mesenchymal transition (EMT) is a multistep dedifferentiation program important in tissue repair. Here, we examined the role of the transcriptional regulator NF-κB in EMT of primary human small airway epithelial cells (hSAECs). Surprisingly, transforming growth factor ß (TGFß) activated NF-κB/RELA proto-oncogene, NF-κB subunit (RELA) translocation within 1 day of stimulation, yet induction of its downstream gene regulatory network occurred only after 3 days. A time course of TGFß-induced EMT transition was analyzed by RNA-Seq in the absence or presence of inducible shRNA-mediated silencing of RELA. In WT cells, TGFß stimulation significantly affected the expression of 2,441 genes. Gene set enrichment analysis identified WNT, cadherin, and NF-κB signaling as the most prominent TGFß-inducible pathways. By comparison, RELA controlled expression of 3,138 overlapping genes mapping to WNT, cadherin, and chemokine signaling pathways. Conducting upstream regulator analysis, we found that RELA controls six clusters of upstream transcription factors, many of which overlapped with a transcription factor topology map of EMT developed earlier. RELA triggered expression of three key EMT pathways: 1) the WNT/ß-catenin morphogen pathway, 2) the JUN transcription factor, and 3) the Snail family transcriptional repressor 1 (SNAI1). RELA binding to target genes was confirmed by ChIP. Experiments independently validating WNT dependence on RELA were performed by silencing RELA via genome editing and indicated that TGFß-induced WNT5B expression and downstream activation of the WNT target AXIN2 are RELA-dependent. We conclude that RELA is a master transcriptional regulator of EMT upstream of WNT morphogen, JUN, SNAI1-ZEB1, and interleukin-6 autocrine loops.


Assuntos
Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Sistema Respiratório/citologia , Fator de Transcrição RelA/fisiologia , Transcrição Gênica , Redes Reguladoras de Genes , Humanos , Interleucina-6 , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-jun , Fatores de Transcrição da Família Snail , Via de Sinalização Wnt
17.
J Biol Chem ; 293(36): 14100-14111, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30030373

RESUMO

Ski-related oncogene SnoN (SnoN or SKIL) regulates multiple signaling pathways in a tissue- and developmental stage-dependent manner and has broad functions in embryonic angiogenesis, mammary gland alveologenesis, cancer, and aging. Here, we report that SnoN also plays a critical role in white adipose tissue (WAT) development by regulating mesenchymal stem cell (MSC) self-renewal and differentiation. We found that SnoN promotes MSC differentiation in the adipocyte lineage by antagonizing activin A/Smad2, but not TGFß/Smad3 signaling. Mice lacking SnoN or expressing a mutant SnoN defective in binding to the Smads were protected from high-fat diet-induced obesity and insulin resistance, and MSCs lacking a functional SnoN exhibited defective differentiation. We further demonstrated that activin, via Smad2, appears to be the major regulator of WAT development in vivo We also noted that activin A is abundantly expressed in WAT and adipocytes through an autocrine mechanism and promotes MSC self-renewal and inhibits adipogenic differentiation by inducing expression of the gene encoding the homeobox transcription factor Nanog. Of note, SnoN repressed activin/Smad2 signaling and activin A expression, enabling expression of adipocyte-specific transcription factors and promoting adipogenic differentiation. In conclusion, our study has revealed that SnoN plays an important in vivo role in adipocyte differentiation and WAT development in vivo by decreasing activity in the activin/Smad2 signaling pathway.


Assuntos
Adipócitos/citologia , Diferenciação Celular , Obesidade , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais , Ativinas/antagonistas & inibidores , Ativinas/metabolismo , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Células-Tronco Mesenquimais/citologia , Camundongos , Proteína Smad2/antagonistas & inibidores
18.
J Biol Chem ; 293(15): 5668-5678, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29467228

RESUMO

The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-ß/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-ß-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-ß-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo, BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development.


Assuntos
Aorta/embriologia , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Músculo Liso Vascular/embriologia , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/biossíntese , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Aorta/citologia , Linhagem Celular , Humanos , Camundongos , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , RNA Longo não Codificante/genética
19.
Adv Exp Med Biol ; 1185: 3-7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884580

RESUMO

Genetic variants of high-temperature requirement A serine peptidase 1 (HTRA1) and age-related maculopathy susceptibility 2 (ARMS2) are associated with age-related macular degeneration (AMD). One HTRA1 single nucleotide polymorphism (SNP) is situated in the promotor region (rs11200638) resulting in increased expression, while two synonymous SNPs are located in exon 1 (rs1049331:C > T, rs2293870:G > T). HtrA1 is known to inhibit transforming growth factor-ß (TGF-ß) signaling, a pathway regulating quiescence of microglia, the resident immune cells of the brain and retina. Microglia-mediated immune responses contribute to AMD pathogenesis. It is currently unclear whether AMD-associated HTRA1 variants influence TGF-ß signaling and microglia phenotypes. Here, we show that an HtrA1 isoform carrying AMD-associated SNPs in exon 1 exhibits increased proteolytic activity. However, when incubating TGF-ß-treated reactive microglia with HtrA1 protein variants, neither the wildtype nor the SNP-associated isoforms changed microglia activation in vitro.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/genética , Microglia/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Serina Endopeptidases
20.
J Biol Chem ; 292(22): 9051-9062, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28424263

RESUMO

Obesity and its associated complications such as insulin resistance and non-alcoholic fatty liver disease are reaching epidemic proportions. In mice, the TGF-ß superfamily is implicated in the regulation of white and brown adipose tissue differentiation. The kielin/chordin-like protein (KCP) is a secreted regulator of the TGF-ß superfamily pathways that can inhibit both TGF-ß and activin signals while enhancing bone morphogenetic protein (BMP) signaling. However, KCP's effects on metabolism and obesity have not been studied in animal models. Therefore, we examined the effects of KCP loss or gain of function in mice that were maintained on either a regular or a high-fat diet. KCP loss sensitized the mice to obesity and associated complications such as glucose intolerance and adipose tissue inflammation and fibrosis. In contrast, transgenic mice that expressed KCP in the kidney, liver, and adipose tissues were resistant to developing high-fat diet-induced obesity and had significantly reduced white adipose tissue. Moreover, KCP overexpression shifted the pattern of SMAD signaling in vivo, increasing the levels of phospho (P)-SMAD1 and decreasing P-SMAD3. Adipocytes in culture showed a cell-autonomous effect in response to added TGF-ß1 or BMP7. Metabolic profiling indicated increased energy expenditure in KCP-overexpressing mice and reduced expenditure in the KCP mutants with no effect on food intake or activity. These findings demonstrate that shifting the TGF-ß superfamily signaling with a secreted protein can alter the physiology and thermogenic properties of adipose tissue to reduce obesity even when mice are fed a high-fat diet.


Assuntos
Adipócitos/metabolismo , Proteínas de Transporte/metabolismo , Gorduras na Dieta/efeitos adversos , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Adipócitos/patologia , Animais , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Proteínas de Transporte/genética , Gorduras na Dieta/farmacologia , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Especificidade de Órgãos/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA