Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol (Mosk) ; 56(3): 503-509, 2022.
Artigo em Russo | MEDLINE | ID: mdl-35621107

RESUMO

Coronaviridae is a family of single-stranded RNA (ssRNA) viruses that can cause diseases with high mortality rates. SARS-CoV-1 and MERS-CoV appeared in 2002-2003 and 2012, respectively. A novel coronavirus, SARS-CoV-2, emerged in 2019 in Wuhan (China) and has caused more than 5 million deaths in worldwide. The entry of SARS-CoV-1 into the cell is due to the interaction of the viral spike (S) protein and the cell protein, angiotensin-converting enzyme 2 (ACE2). After infection, virus assembly occurs in Golgi apparatus-derived vesicles during exocytosis. One of the possible participants in this process is LAMP1 protein. We established transgenic Vero cell lines with increased expression of human LAMP1 gene and evaluated SARS-CoV-1 and SARS-CoV-2 production. An increase in the production of both viruses in LAMP1-expressing cells when compared with Vero cells was observed, especially in the presence of trypsin during infection. From these results it can be assumed that LAMP1 promotes SARS-CoV-1 and SARS-CoV-2 production due to enhanced exocytosis.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Animais Geneticamente Modificados , COVID-19/genética , Chlorocebus aethiops , Humanos , Proteínas de Membrana Lisossomal , Peptidil Dipeptidase A/genética , SARS-CoV-2/genética , Células Vero
2.
Mol Biol (Mosk) ; 56(6): 990-1013, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36475484

RESUMO

This review is devoted to the prospects for the use of fundamentally important approaches and methods for the correction and therapy of genodermatoses, a group of inherited skin diseases. The greatest number of methods was applicable for the group of inherited epidermolysis bullosa. Gene replacement using viral and non-viral methods of delivery to cells has been replaced by genome editing using programmable nucleases used both in vitro and in vivo. The focus is on more widely used methods applied in vitro to various cell types. The description of the methods used is classified based on the use of DNA break repair pathways: the canonical non-homologous end-reconnection pathway-cNHEJ, and directed homologous recombination-HDR. The choice of editing strategy depends on the type of mutation causing the disease, the type of mutation inheritance, and the nucleotide environment of the mutation. Animal disease models obtained by genome editing are considered. The experience of developing methods for editing the genome and their application for the treatment of genodermatoses, previously recognized as incurable, is summarized.


Assuntos
Edição de Genes
3.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3345-3354, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27569901

RESUMO

BACKGROUND: Iron deficiency related gene, Femu2, encodes protein homologous to a C2H2-type zinc finger protein, which participates in the regulation of FOX1 gene induced by iron (Fe) deficiency in Chlamydomonas reinhardtii. In this study, we investigate the gene function of Femu2 in response to salt stress in C. reinhardtii. METHODS: Femu2-overexpressing and Femu2-silencing transgenic cells were analyzed under salt stress. Several physiological indices were measured, and global changes in gene expression were investigated via RNA-seq. RESULTS: Compared with that of the non-treated control, the transcript levels of Femu2 were dramatically induced by iron deficiency and can also be significantly induced after algal cell exposure to Tris-acetate-phosphate (TAP) medium with 100 and 150mM NaCl. The promoter also responded to NaCl induction. Femu2-overexpressing transgenic algal cells exhibited significantly enhanced tolerance to salt stress. Conversely, Femu2-silencing cells showed higher sensitivity to salt stress than the control. Physiological analyses revealed that the overexpression of Femu2 increased the contents of proline and soluble sugars in transgenic cells under high salinity and that silencing Femu2 resulted in increased malondialdehyde level and decreased superoxide dismutase activity. RNA-seq results showed that a total of 248 genes have opposite expression profiles and that 5508 and 2120 genes were distinctly up-regulated or down-regulated in Femu2-overexpressing and Femu2-silencing transgenic cells under salt stress, respectively. CONCLUSION: Femu2 may play an important positive role in protecting C. reinhardtii against salt stress. GENERAL SIGNIFICANCE: The results of this study indicated that Femu2 may be useful in improving plant salt tolerance.


Assuntos
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Genes de Plantas , Deficiências de Ferro , Proteínas de Plantas/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Inativação Gênica/efeitos dos fármacos , Manitol/farmacologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Fisiológico/efeitos dos fármacos
4.
Front Plant Sci ; 15: 1308417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633452

RESUMO

The ectopic overexpression of developmental regulator (DR) genes has been reported to improve the transformation in recalcitrant plant species because of the promotion of cellular differentiation during cell culture processes. In other words, the external plant growth regulator (PGR) application during the tissue and cell culture process is still required in cases utilizing DR genes for plant regeneration. Here, the effect of Arabidopsis BABY BOOM (BBM) and WUSCHEL (WUS) on the differentiation of tobacco transgenic cells was examined. We found that the SRDX fusion to WUS, when co-expressed with the BBM-VP16 fusion gene, significantly influenced the induction of autonomous differentiation under PGR-free culture conditions, with similar effects in some other plant species. Furthermore, to understand the endogenous background underlying cell differentiation toward regeneration, phytohormone and RNA-seq analyses were performed using tobacco leaf explants in which transgenic cells were autonomously differentiating. The levels of active auxins, cytokinins, abscisic acid, and inactive gibberellins increased as cell differentiation proceeded toward organogenesis. Gene Ontology terms related to phytohormones and organogenesis were identified as differentially expressed genes, in addition to those related to polysaccharide and nitrate metabolism. The qRT-PCR four selected genes as DEGs supported the RNA-seq data. This differentiation induction system and the reported phytohormone and transcript profiles provide a foundation for the development of PGR-free tissue cultures of various plant species, facilitating future biotechnological breeding.

5.
Methods Mol Biol ; 2589: 51-73, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255617

RESUMO

Class I histone deacetylases (HDACs) are important regulators of cellular functions in health and disease. HDAC1, HDAC2, HDAC3, and HDAC8 are promising targets for the treatment of cancer, neurological, and immunological disorders. These enzymes have both catalytic and non-catalytic functions in the regulation of gene expression. We here describe the generation of a genetic toolbox by the CRISPR/Cas9 methodology in nearly haploid human tumor cells. This novel model system allows to discriminate between catalytic and structural functions of class I HDAC enzymes and to mimic the treatment with specific HDAC inhibitors.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas Repressoras
6.
Plants (Basel) ; 11(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35050059

RESUMO

Stilbenes are plant phenolics known to rapidly accumulate in grapevine and other plants in response to injury or pathogen attack and to exhibit a great variety of healing beneficial effects. It has previously been shown that several calmodulin-like protein (CML) genes were highly up-regulated in cell cultures of wild-growing grapevine Vitis amurensis Rupr. in response to stilbene-modulating conditions, such as stress hormones, UV-C, and stilbene precursors. Both CML functions and stilbene biosynthesis regulation are still poorly understood. In this study, we investigated the effect of overexpression of five VaCML genes on stilbene and biomass accumulation in the transformed cell cultures of V. amurensis. We obtained 16 transgenic cell lines transformed with the VaCML52, VaCML65, VaCML86, VaCML93, and VaCML95 genes (3-4 independent lines per gene) under the control of the double CaMV 35S promoter. HPLC-MS analysis showed that overexpression of the VaCML65 led to a considerable and consistent increase in the content of stilbenes of 3.8-23.7 times in all transformed lines in comparison with the control calli, while biomass accumulation was not affected. Transformation of the V. amurensis cells with other analyzed VaCML genes did not lead to a consistent and considerable effect on stilbene biosynthesis in the cell lines. The results indicate that the VaCML65 gene is implicated in the signaling pathway regulating stilbene biosynthesis as a strong positive regulator and can be useful in viticulture and winemaking for obtaining grape cultivars with a high content of stilbenes and stress resistance.

7.
Mol Biol ; 56(3): 463-468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693978

RESUMO

Coronaviridae is a family of single-stranded RNA (ssRNA) viruses that can cause diseases with high mortality rates. SARS-CoV-1 and MERS-CoV appeared in 2002‒2003 and 2012, respectively. A novel coronavirus, SARS-CoV-2, emerged in 2019 in Wuhan (China) and has caused more than 5 million deaths in worldwide. The entry of SARS-CoV-1 into the cell is due to the interaction of the viral spike (S) protein and the cell protein, angiotensin-converting enzyme 2 (ACE2). After infection, virus assembly occurs in Golgi apparatus-derived vesicles during exocytosis. One of the possible participants in this process is LAMP1 protein. We established transgenic Vero cell lines with increased expression of human LAMP1 gene and evaluated SARS-CoV-1 and SARS-CoV-2 production. An increase in the production of both viruses in LAMP1-expressing cells when compared with Vero cells was observed, especially in the presence of trypsin during infection. From these results it can be assumed that LAMP1 promotes SARS-CoV-1 and SARS-CoV-2 production due to enhanced exocytosis.

8.
Plants (Basel) ; 11(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893620

RESUMO

Stilbenes are plant defense compounds known to rapidly accumulate in grapevine and some other plant species in response to microbial infection and several abiotic stresses. Stilbenes have attracted considerable attention due to valuable biological effects with multi-spectrum therapeutic application. However, there is a lack of information on natural signaling pathways and transcription factors regulating stilbene biosynthesis. It has been previously shown that MYB R2R3 transcription factor genes VaMyb40 and VaMyb60 were up-regulated in cell cultures of wild-growing grapevine Vitis amurensis Rupr. in response to UV irradiation. In this study, the effects of VaMyb40 or VaMyb60 overexpression in cell cultures of V. amurensis on their capability to produce stilbenes were investigated. Overexpression of the VaMyb60 gene led to a considerable increase in the content of stilbenes in three independently transformed transgenic lines in 5.9-13.9 times, while overexpression of the VaMyb40 gene also increased the content of stilbenes, although to a lesser extent (in 3.4-4.0 times) in comparison with stilbene levels in the empty vector-transformed calli. Stilbene content and stilbene production in the VaMyb60-transgenic calli reached 18.8 mg/g of dry weight (DW) and 150.8 mg/L, respectively. Using HPLC analysis, we detected eight individual stilbenes: t-resveratrol diglucoside, t-piceid, t-resveratrol, ε-viniferin, δ-viniferin, cis-resveratrol, cis-piceid, t-piceatannol. T-resveratrol prevailed over other stilbenoid compounds (53.1-89.5% of all stilbenes) in the VaMyb-overexpressing cell cultures. Moreover, the VaMyb40- and VaMyb60-transformed calli were capable of producing anthocyanins up to 0.035 mg/g DW, while the control calli did not produce anthocyanins. These findings show that the VaMyb40 and VaMyb60 genes positively regulate the stilbene biosynthesis as strong positive transcription regulators and can be used in biotechnological applications for stilbene production or high-quality viticulture and winemaking.

9.
Front Immunol ; 12: 694588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489940

RESUMO

Reactivation of latent cytomegalovirus (CMV) endangers the therapeutic success of hematopoietic cell transplantation (HCT) in tumor patients due to cytopathogenic virus spread that leads to organ manifestations of CMV disease, to interstitial pneumonia in particular. In cases of virus variants that are refractory to standard antiviral pharmacotherapy, immunotherapy by adoptive cell transfer (ACT) of virus-specific CD8+ T cells is the last resort to bridge the "protection gap" between hematoablative conditioning for HCT and endogenous reconstitution of antiviral immunity. We have used the well-established mouse model of CD8+ T-cell immunotherapy by ACT in a setting of experimental HCT and murine CMV (mCMV) infection to pursue the concept of improving the efficacy of ACT by therapeutic vaccination (TherVac) post-HCT. TherVac aims at restimulation and expansion of limited numbers of transferred antiviral CD8+ T cells within the recipient. Syngeneic HCT was performed with C57BL/6 mice as donors and recipients. Recipients were infected with recombinant mCMV (mCMV-SIINFEKL) that expresses antigenic peptide SIINFEKL presented to CD8+ T cells by the MHC class-I molecule Kb. ACT was performed with transgenic OT-I CD8+ T cells expressing a T-cell receptor specific for SIINFEKL-Kb. Recombinant human CMV dense bodies (DB-SIINFEKL), engineered to contain SIINFEKL within tegument protein pUL83/pp65, served for vaccination. DBs were chosen as they represent non-infectious, enveloped, and thus fusion-competent subviral particles capable of activating dendritic cells and delivering antigens directly into the cytosol for processing and presentation in the MHC class-I pathway. One set of our experiments documents the power of vaccination with DBs in protecting the immunocompetent host against a challenge infection. A further set of experiments revealed a significant improvement of antiviral control in HCT recipients by combining ACT with TherVac. In both settings, the benefit from vaccination with DBs proved to be strictly epitope-specific. The capacity to protect was lost when DBs included the peptide sequence SIINFEKA lacking immunogenicity and antigenicity due to C-terminal residue point mutation L8A, which prevents efficient proteasomal peptide processing and binding to Kb. Our preclinical research data thus provide an argument for using pre-emptive TherVac to enhance antiviral protection by ACT in HCT recipients with diagnosed CMV reactivation.


Assuntos
Transferência Adotiva , Linfócitos T CD8-Positivos/transplante , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/administração & dosagem , Citomegalovirus/patogenicidade , Transplante de Células-Tronco Hematopoéticas , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Proliferação de Células , Células Cultivadas , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Vacinas contra Citomegalovirus/imunologia , Modelos Animais de Doenças , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Interações Hospedeiro-Patógeno , Hospedeiro Imunocomprometido , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Vacinação , Ativação Viral
10.
Stem Cell Res Ther ; 10(1): 341, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753034

RESUMO

Induced pluripotent stem cells (iPSCs) can self-renew indefinitely in culture and differentiate into all specialized cell types including gametes. iPSCs do not exist naturally and are instead generated ("induced" or "reprogrammed") in culture from somatic cells through ectopic co-expression of defined pluripotency factors. Since they can be generated from any healthy person or patient, iPSCs are considered as a valuable resource for regenerative medicine to replace diseased or damaged tissues. In addition, reprogramming technology has provided a powerful tool to study mechanisms of cell fate decisions and to model human diseases, thereby substantially potentiating the possibility to (i) discover new drugs in screening formats and (ii) treat life-threatening diseases through cell therapy-based strategies. However, various legal and ethical barriers arise when aiming to exploit the full potential of iPSCs to minimize abuse or unauthorized utilization. In this review, we discuss bioethical, legal, and societal concerns associated with research and therapy using iPSCs. Furthermore, we present key questions and suggestions for stem cell scientists, legal authorities, and social activists investigating and working in this field.


Assuntos
Temas Bioéticos , Pesquisa Biomédica/ética , Técnicas de Reprogramação Celular/ética , Células-Tronco Pluripotentes Induzidas , Humanos
11.
Stem Cell Res ; 21: 51-57, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28390247

RESUMO

The homeodomain transcription factor Shox2 controls the development and function of the native cardiac pacemaker, the sinoatrial node (SAN). Moreover, SHOX2 mutations have been associated with cardiac arrhythmias in humans. For detailed examination of Shox2-dependent developmental mechanisms in SAN cells, we established a murine embryonic stem cell (ESC)-based model using Shox2 as a molecular tool. Shox2+/+ and Shox2-/- ESC clones were isolated and differentiated according to five different protocols in order to evaluate the most efficient enrichment of SAN-like cells. Expression analysis of cell subtype-specific marker genes revealed most efficient enrichment after CD166-based cell sorting. Comparative cardiac expression profiles of Shox2+/+ and Shox2-/- ESCs were examined by nCounter technology. Among other genes, we identified Nppb as a novel putative Shox2 target during differentiation in ESCs. Differential expression of Nppb could be confirmed in heart tissue of Shox2-/- embryos. Taken together, we established an ESC-based cardiac differentiation model and successfully purified Shox2+/+ and Shox2-/- SAN-like cells. This now provides an excellent basis for the investigation of molecular mechanisms under physiological and pathophysiological conditions for evaluating novel therapeutic approaches.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Nó Sinoatrial/citologia , Molécula de Adesão de Leucócito Ativado/metabolismo , Animais , Separação Celular , Feminino , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo
12.
Stem Cell Res ; 17(2): 228-234, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27591479

RESUMO

Transgene-mediated programming is a preeminent strategy to direct cellular identity. To facilitate cell fate switching, lineage regulating genes must be efficiently and uniformly induced. However, gene expression is often heterogeneous in transgenic systems. Consistent with this notion, a non-uniform reporter gene expression was detected in our doxycycline (DOX)-regulated, murine embryonic stem (ES) cell clones. Interestingly, a significant fraction of cells within each clone failed to produce any reporter signals upon DOX treatment. We found that the majority of these non-responsive cells neither carry reporter transgene nor geneticin/G418 resistance. This observation suggested that our ES cell clones contained non-recombined cells that survived the G418 selection which was carried out during the establishment of these clones. We successfully eliminated most of these corrupted cells with repeated chemical (G418) selection, however, even after prolonged G418 treatments, a few cells remained non-responsive due to epigenetic silencing. We found that cell sorting has been the most efficient approach to select those cells which can uniformly and stably induce the integrated transgene in this ES cell based platform. Together, our data revealed that post-cloning chemical re-selection or cell sorting strongly facilitate the production of ES cell lines with a uniform transgene induction capacity.


Assuntos
Separação Celular/métodos , Doxiciclina/farmacologia , Expressão Gênica/efeitos dos fármacos , Transgenes/genética , Acetilação/efeitos dos fármacos , Animais , Ácido Butírico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Metilação de DNA/efeitos dos fármacos , Citometria de Fluxo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA