Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 189: 25-37, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395296

RESUMO

Aortic dissection (AD) is the most catastrophic vascular disease with a high mortality rate. Trimethylamine N-oxide (TMAO), a gut microbial metabolite, has been implicated in the pathogenesis of cardiovascular diseases. However, the role of TMAO in AD and the underlying mechanisms remain unclear. This study aimed to explore the effects of TMAO on AD. Plasma and fecal samples from patients with AD and healthy individuals were collected to analyze TMAO levels and gut microbial species, respectively. The plasma levels of TMAO were significantly higher in 253 AD patients compared with those in 98 healthy subjects (3.47, interquartile range (IQR): 2.33 to 5.18 µM vs. 1.85, IQR: 1.40 to 3.35 µM; p < 0.001). High plasma TMAO levels were positively associated with AD severity. An increase in the relative abundance of TMA-producing genera in patients with AD was revealed using 16S rRNA sequencing. In the angiotensin II or ß-aminopropionitrile-induced rodent model of AD, mice fed a TMAO-supplemented diet were more likely to develop AD compared to mice fed a normal diet. Conversely, TMAO depletion mitigated AD formation in the BAPN model. RNA sequencing of aortic endothelial cells isolated from mice administered TMAO revealed significant upregulation of genes involved in inflammatory pathways. The in vitro experiments verified that TMAO promotes endothelial dysfunction and activates nuclear factor (NF)-κB signaling. The in vivo BAPN-induced AD model confirmed that TMAO increased aortic inflammation. Our study demonstrates that the gut microbial metabolite TMAO aggravates the development of AD at least in part by inducing endothelial dysfunction and inflammation. This study provides new insights into the etiology of AD and ideas for its management.


Assuntos
Dissecção Aórtica , Microbioma Gastrointestinal , Metilaminas , Humanos , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S , Aminopropionitrilo , Células Endoteliais , Inflamação , Dissecção Aórtica/etiologia
2.
Neurobiol Dis ; 192: 106423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286388

RESUMO

Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced by the action of gut microbiota and the hepatic enzyme Flavin Mono­oxygenase 3 (FMO3). TMAO level has a positive correlation with the risk of cardiovascular events, including stroke, and their level is influenced mainly by dietary choice and the action of liver enzyme FMO3. TMAO plays a role in the development of atherosclerosis plaque, which is one of the causative factors of the stroke event. Preclinical and clinical investigations on the TMAO and associated stroke risk, severity, and outcomes are summarised in this review. In addition, mechanisms of TMAO-driven vascular dysfunction are also discussed, such as inflammation, oxidative stress, thrombus and foam cell formation, altered cholesterol and bile acid metabolism, etc. Post-stroke inflammatory cascades involving activation of immune cells, i.e., microglia and astrocytes, result in Blood-brain-barrier (BBB) disruption, allowing TMAO to infiltrate the brain and further aggravate inflammation. This event occurs as a result of the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway through the release of inflammatory cytokines and chemokines that further aggravate the BBB and initiate further recruitment of immune cells in the brain. Thus, it's likely that maintaining TMAO levels and associated gut microbiota could be a promising approach for treating and improving stroke complications.


Assuntos
Metilaminas , Acidente Vascular Cerebral , Humanos , Inflamação , Óxidos
3.
Cancer ; 130(11): 1982-1990, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285606

RESUMO

BACKGROUND: Dietary intake influences gut microbiome composition, which in turn may be associated with colorectal cancer (CRC). Associations of the gut microbiome with colorectal carcinogenesis may be mediated through bacterially regulated, metabolically active metabolites, including trimethylamine N-oxide (TMAO) and its precursors, choline, L-carnitine, and betaine. METHODS: Prospective associations of circulating TMAO and its precursors with CRC risk were investigated. TMAO, choline, betaine, and L-carnitine were measured in baseline serum samples from 761 incident CRC cases and 1:1 individually matched controls in the prospective Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort using targeted fully quantitative liquid chromatography tandem mass spectrometry panels. Prospective associations of the metabolites with CRC risk, using multivariable conditional logistic regression, were measured. Associations of a priori-selected dietary exposures with the four metabolites were also investigated. RESULTS: TMAO and its precursors were not associated with CRC risk overall, but TMAO and choline were positively associated with higher risk for distal CRC (continuous ORQ90 vs. Q10 [95% CI] = 1.90 [CI, 1.24-2.92; p = .003] and 1.26 [1.17-1.36; p < .0001], respectively). Conversely, choline was inversely associated with rectal cancer (ORQ90 vs. Q10 [95% CI] = 0.77 [0.76-0.79; p < .001]). Red meat, which was previously associated with CRC risk in the Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort , was positively associated with TMAO (Spearman rho = 0.10; p = .0003). CONCLUSIONS: Serum TMAO and choline may be associated with higher risk of distal CRC, and red meat may be positively associated with serum TMAO. These findings provide insight into a potential microbially mediated mechanism underlying CRC etiology.


Assuntos
Colina , Neoplasias Colorretais , Detecção Precoce de Câncer , Metilaminas , Neoplasias da Próstata , Humanos , Metilaminas/sangue , Masculino , Feminino , Neoplasias Colorretais/sangue , Neoplasias Colorretais/epidemiologia , Pessoa de Meia-Idade , Idoso , Neoplasias da Próstata/sangue , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/diagnóstico , Colina/sangue , Detecção Precoce de Câncer/métodos , Estudos Prospectivos , Carnitina/sangue , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/epidemiologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/epidemiologia , Estudos de Casos e Controles , Betaína/sangue , Fatores de Risco , Microbioma Gastrointestinal
4.
J Nutr ; 154(2): 491-497, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38110180

RESUMO

BACKGROUND: Modification of the nitrate (NO3)-nitrite (NO2)-nitric oxide (NO) pathway can be induced by oral intake of inorganic NO3 (NIT) or NO3-rich products, such as beetroot juice (BRJ). OBJECTIVES: The primary aim of this study was to evaluate the plasma changes in betaine, choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), and NO3/NO2 (NOx) concentrations over 4 h after single oral ingestion of NIT or BRJ. The flow-mediated skin fluorescence (FMSF) method was applied to measure the changes in nicotinamide adenine dinucleotide reduced form (NADH) in response to transient ischemia and reperfusion. We hypothesized that various sources of NO3 may differently affect endothelial and mitochondrial functions in healthy human subjects. METHODS: In a randomized crossover trial, 8 healthy young adults ingested 800 mg NO3 from either NIT or BRJ on 2 separate days with ≥3 d apart. Venous blood samples were collected every hour, and FMSF determination was applied bihourly. RESULTS: Plasma betaine and choline concentrations peaked at 1 h after BRJ ingestion, and remained significantly higher than baseline values at all time points (P < 0.001 and P < 0.001, compared to preingestion values). Over time, BRJ was more effective in increasing NOx compared with NIT (fixed-trial effect P < 0.001). Baseline fluorescence decreased after both NIT and BRJ consumption (fixed-time effect P = 0.005). Transient ischemia and reperfusion response increased because of NO3 consumption (fixed-time effect P = 0.003), with no differences between trials (P = 0.451; P = 0.912; P = 0.819 at 0, 2, and 4 h, respectively). CONCLUSIONS: Acute ingestion of BRJ elevated plasma betaine and choline, but not TMA and TMAO. Moreover, plasma NOx levels were higher in the BRJ trial than in the NIT trial. Various sources of NO3 positively affected endothelial and mitochondrial functions. This trial was registered at clinicaltrials.gov as NCT05004935.


Assuntos
Beta vulgaris , Metilaminas , Nitratos , Adulto Jovem , Humanos , Betaína/farmacologia , Dióxido de Nitrogênio/farmacologia , Sucos de Frutas e Vegetais , Nitritos , Óxido Nítrico/metabolismo , Antioxidantes/farmacologia , Isquemia , Colina/farmacologia , Suplementos Nutricionais , Estudos Cross-Over , Pressão Sanguínea , Método Duplo-Cego
5.
Arch Microbiol ; 206(4): 201, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564030

RESUMO

Trimethylamine N-oxide (TMAO) is a gut metabolite that acts as a biomarker for chronic diseases, and is generated by the oxidation of trimethylamine (TMA) produced by gut microflora. Since, microbial degradation of TMA is predicted to be used to restrict the production of TMAO, we aimed to isolate bacterial strains that could effectively degrade TMA before being oxidized to TMAO. As marine fish is considered to have a rich content of TMAO, we have isolated TMA degrading isolates from fish skin. Out of the fourteen isolates, depending on their rapid TMA utilization capability in mineral salt medium supplemented with TMA as a sole carbon and nitrogen source, isolate PS1 was selected as our desired isolate. Its TMA degrading capacity was further confirmed through spectrophotometric, Electrospray Ionization Time-of-Flight Mass Spectrometry (ESI TOF-MS) and High performance liquid chromatography (HPLC) analysis and in silico analysis of whole genome (WG) gave further insights of protein into its TMA degradation pathways. PS1 was taxonomically identified as Paracoccus sp. based on its 16S rRNA and whole genome sequence analysis. As PS1 possesses the enzymes required for degradation of TMA, clinical use of this isolate has the potential to reduce TMAO generation in the human gut.


Assuntos
Genômica , Metilaminas , Paracoccus , Animais , Humanos , RNA Ribossômico 16S/genética , Paracoccus/genética
6.
Liver Int ; 44(5): 1142-1153, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314906

RESUMO

BACKGROUND AND AIMS: Emerging evidence suggests a detrimental impact of high red meat intake on hepatic steatosis. We investigated the potential interplay between red meat intake and gut microbiome on circulating levels of trimethylamine N-oxide (TMAO) and hepatic steatosis risk. METHODS: This cross-sectional study was conducted in a representative sample of 754 community-dwelling adults in Huoshan, China. Diet was collected using 4 quarterly 3 consecutive 24-h dietary (12-day) recalls. We profiled faecal microbiome using 16S ribosomal RNA sequencing and quantified serum TMAO and its precursors using LC-tandem MS (n = 333). We detected hepatic steatosis by FibroScan. The adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were calculated using logistic regression. RESULTS: TMAO levels but not its precursors were positively associated with the likelihood of hepatic steatosis (aOR per 1-SD increment 1.86, 95% CI 1.04-3.32). We identified 14 bacterial genera whose abundance was associated with TMAO concentration (pFDR < .05) belonging to the phyla Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria families. Per 10 g/day increase in red meat intake was positively associated with TMAO levels among participants who had higher red meat intake (>70 g/day) and higher TMAO-predicting microbial scores (TMS, ß = .045, p = .034), but not among others (pinteraction = .030). TMS significantly modified the positive association between red meat and steatosis (pinteraction = .032), with a stronger association being observed among participants with higher TMS (aOR 1.30, 95% CI 1.07-1.57). CONCLUSIONS: The bacterial genera that predicted TMAO levels may jointly modify the association between red meat intake and TMAO levels and the subsequent risk of hepatic steatosis.


Assuntos
Microbioma Gastrointestinal , Carne Vermelha , Adulto , Humanos , Estudos Transversais , Metilaminas
7.
Br J Nutr ; 131(11): 1915-1923, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38443197

RESUMO

It is inconclusive whether trimethylamine N-oxide (TMAO) and choline and related metabolites, namely trimethylamine (TMA), l-carnitine, betaine and dimethylglycine (DMG), are associated with non-alcoholic fatty liver disease (NAFLD). Our objective was to investigate these potential associations. Additionally, we sought to determine the mediating role of TMAO. In this 1:1 age- and sex-matched case-control study, a total of 150 pairs comprising NAFLD cases and healthy controls were identified. According to the fully adjusted model, after the highest tertile was compared with the lowest tertile, the plasma TMAO concentration (OR = 2·02 (95 % CI 1·04, 3·92); P trend = 0·003), l-carnitine concentration (OR = 1·79 (1·01, 3·17); P trend = 0·020) and DMG concentration (OR = 1·81 (1·00, 3·28); P trend = 0·014) were significantly positively associated with NAFLD incidence. However, a significantly negative association was found for plasma betaine (OR = 0. 50 (0·28, 0·88); P trend = 0·001). The restricted cubic splines model consistently indicated positive dose-response relationships between exposure to TMAO, l-carnitine, and DMG and NAFLD risk, with a negative association being observed for betaine. The corresponding AUC increased significantly from 0·685 (0·626, 0·745) in the traditional risk factor model to 0·769 (0·716, 0·822) when TMAO and its precursors were included (l-carnitine, betaine and choline) (P = 0·032). Mediation analyses revealed that 14·7 and 18·6 % of the excess NAFLD risk associated with l-carnitine and DMG, respectively, was mediated by TMAO (the P values for the mediating effects were 0·021 and 0·036, respectively). These results suggest that a higher concentration of TMAO is associated with increased NAFLD risk among Chinese adults and provide evidence of the possible mediating role of TMAO.


Assuntos
Betaína , Carnitina , Colina , Metilaminas , Hepatopatia Gordurosa não Alcoólica , Humanos , Metilaminas/sangue , Colina/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Feminino , Masculino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Betaína/sangue , Carnitina/sangue , Carnitina/análogos & derivados , Adulto , Fatores de Risco , Sarcosina/análogos & derivados , Sarcosina/sangue , China/epidemiologia , Incidência
8.
BMC Cardiovasc Disord ; 24(1): 265, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773380

RESUMO

BACKGROUND: Trimethylamine N-oxide (TMAO) is a metabolite derived from the gut microbiota and has been reported to be correlated with cardiovascular diseases. Although TMAO is associated with the severity of coronary artery disease in subjects with coronary heart disease (CHD) history. However, the correlation between TMAO and the atherosclerotic burden in newly diagnosed cases of CHD is unknown. METHODS: In this hospital-based study, we enrolled 429 individuals newly diagnosed with CHD undergoing coronary angiography. Plasma TMAO was assessed before coronary angiography. SYNTAX score was computed during coronary angiography to estimate the coronary artery atherosclerotic burden. Both linear and logistic regression analyses were conducted to explore the correlation between plasma TMAO levels and SYNTAX score in newly diagnosed CHD population. RESULTS: The TMAO in patients with SYNTAX ≥ 33 and subjects with SYNTAX < 23 were 6.10 (interquartile range [IQR]: 3.53 to 9.15) µmol/L and 4.90 [IQR: 3.25 to 7.68] µmol/L, respectively. Linear regression adjusting for traditional risk factors showed TMAO level was positively correlated with SYNTAX score (ß = 0.179; p = 0.006) in CHD population. When TMAO was added to models with traditional risk factors, the predictive value improved significantly, with the receiver operating characteristic curve (AUC) increased from 0.7312 to 0.7502 (p = 0.003). Stratified analysis showed that the correlations did not hold true for subjects who were non-smoker or with histories of diabetes. None of the stratifying factors significantly altered the correlation (all p for interaction < 0.05). CONCLUSIONS: We found a positive linear correlation between plasma TMAO and SYNTAX score among newly diagnosed CHD individuals in Chinese population.


Assuntos
Biomarcadores , Angiografia Coronária , Doença da Artéria Coronariana , Metilaminas , Valor Preditivo dos Testes , Índice de Gravidade de Doença , Humanos , Metilaminas/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico , Biomarcadores/sangue , Idoso , Fatores de Risco , Regulação para Cima , Placa Aterosclerótica/sangue , Medição de Risco
9.
Artigo em Inglês | MEDLINE | ID: mdl-39003134

RESUMO

BACKGROUND AND AIMS: The metabolism of choline (highly present in animal products) can produce trimethylamine N-oxide (TMAO), a metabolite with atherosclerotic effects; however, dietary fiber may suppress this metabolic pathway. This study aimed to develop a dietary pattern predictive of plasma TMAO and choline concentrations using reduced rank regression (RRR) and to evaluate its construct validity. METHODS AND RESULTS: Diet and plasma concentrations of choline (µmol/L) and TMAO (µmol/L) were assessed in 1724 post-menopausal women who participated in an ancillary study within the Women's Health Initiative Observational Study (1993-1998). The TMAO dietary pattern was developed using RRR in half of the sample (Training Sample) and applied to the other half of the sample (Validation Sample) to evaluate its construct validity. Energy-adjusted food groups were the predictor variables and plasma choline and TMAO, the response variables. ANCOVA and linear regression models were used to assess associations between each biomarker and the dietary pattern score. Discretionary fat, potatoes, red meat, and eggs were positively associated with the dietary pattern, while yogurt, fruits, added sugar, and starchy vegetables were inversely associated. Mean TMAO and choline concentrations significantly increased across increasing quartiles of the dietary pattern in the Training and Validation samples. Positive associations between the biomarkers and the TMAO dietary pattern were also observed in linear regression models (Validation Sample: TMAO, adjusted beta-coefficient = 0.037 (p-value = 0.0088); Choline, adjusted beta-coefficient = 0.011 (p-value = 0.0224). CONCLUSION: We established the TMAO dietary pattern, a dietary pattern reflecting the potential of the diet to contribute to plasma concentrations of TMAO and choline.

10.
BMC Pulm Med ; 24(1): 185, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632547

RESUMO

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) exhibit a distinct gut microbiota profile; however, the causal association between gut microbiota, associated metabolites, and PAH remains elusive. We aimed to investigate this causal association and to explore whether dietary patterns play a role in its regulation. METHODS: Summary statistics of gut microbiota, associated metabolites, diet, and PAH were obtained from genome-wide association studies. The inverse variance weighted method was primarily used to measure the causal effect, with sensitivity analyses using the weighted median, weighted mode, simple mode, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger methods. A reverse Mendelian randomisation analysis was also performed. RESULTS: Alistipes (odds ratio [OR] = 2.269, 95% confidence interval [CI] 1.100-4.679, P = 0.027) and Victivallis (OR = 1.558, 95% CI 1.019-2.380, P = 0.040) were associated with an increased risk of PAH, while Coprobacter (OR = 0.585, 95% CI 0.358-0.956, P = 0.032), Erysipelotrichaceae (UCG003) (OR = 0.494, 95% CI 0.245-0.996, P = 0.049), Lachnospiraceae (UCG008) (OR = 0.596, 95% CI 0.367-0.968, P = 0.036), and Ruminococcaceae (UCG005) (OR = 0.472, 95% CI 0.231-0.962, P = 0.039) protected against PAH. No associations were observed between PAH and gut microbiota-derived metabolites (trimethylamine N-oxide [TMAO] and its precursors betaine, carnitine, and choline), short-chain fatty acids (SCFAs), or diet. Although inverse variance-weighted analysis demonstrated that elevated choline levels were correlated with an increased risk of PAH, the results were not consistent with the sensitivity analysis. Therefore, the association was considered insignificant. Reverse Mendelian randomisation analysis demonstrated that PAH had no causal impact on gut microbiota-derived metabolites but could contribute to increased the levels of Butyricicoccus and Holdemania, while decreasing the levels of Clostridium innocuum, Defluviitaleaceae UCG011, Eisenbergiella, and Ruminiclostridium 5. CONCLUSIONS: Gut microbiota were discovered suggestive evidence of the impacts of genetically predicted abundancy of certain microbial genera on PAH. Results of our study point that the production of SCFAs or TMAO does not mediate this association, which remains to be explained mechanistically.


Assuntos
Microbioma Gastrointestinal , Metilaminas , Hipertensão Arterial Pulmonar , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Hipertensão Pulmonar Primária Familiar , Colina
11.
Postgrad Med J ; 100(1183): 283-288, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38158712

RESUMO

Trimethylamine-N-oxide (TMAO) is a common intestinal metabolite. The Choline in the nutrient forms TMA under the action of the gut microbiota, which passes through the liver and eventually forms TMAO. Initial studies of TMAO focused on cardiovascular disease, but as research progressed, TAMO's effects were found to be multisystem and closely related to the development of neurological diseases. Intestinal tract is the organ with the largest concentration of bacteria in human body, and the composition and metabolism of gut microbiota affect human health. As a two-way communication axis connecting the central nervous system and the gastrointestinal tract, the brain-gut axis provides the structural basis for TMAO to play its role. This article will review the correlation between TMA/TMAO and neurological diseases in order to find new directions and new targets for the treatment of neurological diseases.


Assuntos
Microbioma Gastrointestinal , Metilaminas , Doenças do Sistema Nervoso , Metilaminas/metabolismo , Humanos , Doenças do Sistema Nervoso/metabolismo , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino/fisiologia
12.
J Ren Nutr ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621431

RESUMO

OBJECTIVES: Trimethylamine N-oxide (TMAO) is a gut bacteria-mediated liver metabolite of dietary betaine, choline, and carnitine, which is excreted by glomerular filtration. We studied whether TMAO is excreted by cardiovascular disease (CVD) in patients with chronic kidney disease (CKD). METHODS: Among 478 patients with CKD stage G2 (n = 104), G3a (n = 163), G3b (n = 123), and G4 (n = 88), we studied the association between fasting plasma concentrations of TMAO, choline, or betaine at baseline and kidney function, prevalent CVD, and future renal outcomes during a mean follow-up of 5.1 years. RESULTS: Decreased glomerular filtration rate was associated with higher plasma concentrations of TMAO, choline, and betaine. Baseline concentrations of TMAO were higher in participants with preexisting CVD compared to those without CVD (8.4 [10.1] vs. 7.8 [8.0] µmol/L; P = .047), but the difference was not significant after adjusting for confounders. During the follow-up, 147 participants experienced CVD or died, and 144 reached the predefined renal endpoint. In the adjusted regression analyses, TMAO or choline concentrations in the upper three quartiles (vs. the lowest quartile) were not associated with any of the study's clinical endpoints. In contrast, the adjusted hazard ratio of plasma betaine in the highest quartile versus the lowest quartile was 2.14 (1.32, 3.47) for the CVD endpoint and 1.64 (1.00, 2.67) for the renal endpoint. CONCLUSIONS: Elevated plasma TMAO concentrations were explained by impaired kidney function. Elevated plasma concentrations of betaine, but not those of TMAO or choline, constituted a risk factor for adverse outcomes. TMAO might not be an appropriate target to reduce CVD or renal outcomes in patients with preexisting CKD.

13.
Eur Heart J ; 44(18): 1608-1618, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883587

RESUMO

AIMS: Little is known about associations of trimethylamine N-oxide (TMAO), a novel gut microbiota-generated metabolite of dietary phosphatidylcholine and carnitine, and its changes over time with all-cause and cause-specific mortality in the general population or in different race/ethnicity groups. The study aimed to investigate associations of serially measured plasma TMAO levels and changes in TMAO over time with all-cause and cause-specific mortality in a multi-ethnic community-based cohort. METHODS AND RESULTS: The study included 6,785 adults from the Multi-Ethnic Study of Atherosclerosis. TMAO was measured at baseline and year 5 using mass spectrometry. Primary outcomes were adjudicated all-cause mortality and cardiovascular disease (CVD) mortality. Secondary outcomes were deaths due to kidney failure, cancer, or dementia obtained from death certificates. Cox proportional hazards models with time-varying TMAO and covariates assessed the associations with adjustment for sociodemographics, lifestyles, diet, metabolic factors, and comorbidities. During a median follow-up of 16.9 years, 1704 participants died and 411 from CVD. Higher TMAO levels associated with higher risk of all-cause mortality [hazard ratio (HR): 1.12, 95% confidence interval (CI): 1.08-1.17], CVD mortality (HR: 1.09, 95% CI: 1.00-1.09), and death due to kidney failure (HR: 1.44, 95% CI: 1.25-1.66) per inter-quintile range, but not deaths due to cancer or dementia. Annualized changes in TMAO levels associated with higher risk of all-cause mortality (HR: 1.10, 95% CI: 1.05-1.14) and death due to kidney failure (HR: 1.54, 95% CI: 1.26-1.89) but not other deaths. CONCLUSION: Plasma TMAO levels were positively associated with mortality, especially deaths due to cardiovascular and renal disease, in a multi-ethnic US cohort.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Demência , Neoplasias , Insuficiência Renal , Adulto , Humanos , Fatores de Risco , Biomarcadores , Metilaminas/metabolismo , Insuficiência Renal/etiologia , Aterosclerose/complicações , Neoplasias/complicações
14.
J Labelled Comp Radiopharm ; 67(7): 254-262, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703027

RESUMO

Reductive N-11C-methylation using [11C]formaldehyde and amines has been used to prepare N-11C-methylated compounds. However, the yields of the N-11C-methylated compounds are often insufficient. In this study, we developed an efficient method for base-free reductive N-11C-methylation that is applicable to a wide variety of substrates, including arylamines bearing electron-withdrawing and electron-donating substituents. A 2-picoline borane complex, which is a stable and mild reductant, was used. Dimethyl sulfoxide was used as the primary reaction solvent, and glacial acetic acid or aqueous acetic acid was used as a cosolvent. While reductive N-11C-methylation efficiently proceeded under anhydrous conditions in most cases, the addition of water to the reductive N-11C-methylation generally increased the yield of the N-11C-methylated compounds. Substrates with hydroxy, carboxyl, nitrile, nitro, ester, amide, and phenone moieties and amine salts were applicable to the reaction. This proposed method for reductive N-11C-methylation should be applicable to a wide variety of substrates, including thermo-labile and base-sensitive compounds because the reaction was performed under relatively mild conditions (70°C) without the need for a base.


Assuntos
Aminas , Radioisótopos de Carbono , Formaldeído , Hidrocarbonetos Iodados , Metilação , Radioisótopos de Carbono/química , Aminas/química , Formaldeído/química , Hidrocarbonetos Iodados/química , Oxirredução
15.
Int J Food Sci Nutr ; 75(4): 385-395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38690724

RESUMO

There are conflicting animal experiments on the effect of trimethylamine N-oxide (TMAO), the dietary metabolite, on non-alcoholic fatty liver disease (NAFLD). This study aims to determine the effect of TMAO on NAFLD. A diet containing 0.3% TMAO was fed to farnesoid X receptor (Fxr)-null mice, a model of NAFLD, for 13 weeks. Fxr-null mice fed TMAO showed significant reductions in liver damage markers but not wild-type mice. Hepatic bile acid and cholesterol levels were significantly decreased, and triacylglycerol levels tended to decrease in TMAO-fed Fxr-null mice. Changes in mRNA levels of hepatic bile acid and cholesterol transporters and synthetic enzymes were observed, which could explain the decreased hepatic bile acid and cholesterol levels in Fxr-null mice given the TMAO diet but not in the wild-type mice. These results suggest that TMAO intake ameliorates liver damage in Fxr-null mice, further altering bile acid/cholesterol metabolism in an FXR-independent manner.


Assuntos
Ácidos e Sais Biliares , Colesterol , Fígado , Metilaminas , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Receptores Citoplasmáticos e Nucleares , Animais , Metilaminas/metabolismo , Ácidos e Sais Biliares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Masculino , Triglicerídeos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , RNA Mensageiro/metabolismo
16.
Int J Food Sci Nutr ; 75(2): 207-220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38149315

RESUMO

This study compares two diets, Dietary Approaches to Stop Hypertension (DASH) and a Low-Calorie Diet on Trimethylamine N-oxide (TMAO) levels and gut microbiota. 120 obese adults were randomly allocated to these three groups: a low-calorie DASH diet, a Low-Calorie diet, or a control group for 12 weeks. Outcomes included plasma TMAO, lipopolysaccharides (LPS), and gut microbiota profiles. After the intervention, the low-calorie DASH diet group demonstrated a greater decrease in TMAO levels (-20 ± 8.1 vs. -10.63 ± 4.6 µM) and a significant decrease in LPS concentration (-19.76 ± 4.2 vs. -5.68 ± 2.3) compared to the low-calorie diet group. Furthermore, the low-calorie DASH diet showed a higher decrease in the Firmicutes and Bactericides (F/B) ratio, which influenced TMAO levels, compared to the Low-Calorie diet (p = 0.028). The current study found the low-calorie DASH diet improves TMAO and LPS in comparison to a Low-Calorie diet.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Microbioma Gastrointestinal , Adulto , Humanos , Sobrepeso , Restrição Calórica , Lipopolissacarídeos , Obesidade , Metilaminas
17.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892218

RESUMO

Liver transplant recipients (LTRs) have lower long-term survival rates compared with the general population. This underscores the necessity for developing biomarkers to assess post-transplantation mortality. Here we compared plasma trimethylamine-N-oxide (TMAO) levels with those in the general population, investigated its determinants, and interrogated its association with all-cause mortality in stable LTRs. Plasma TMAO was measured in 367 stable LTRs from the TransplantLines cohort (NCT03272841) and in 4837 participants from the population-based PREVEND cohort. TMAO levels were 35% higher in LTRs compared with PREVEND participants (4.3 vs. 3.2 µmol/L, p < 0.001). Specifically, TMAO was elevated in LTRs with metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and polycystic liver disease as underlying etiology (p < 0.001 for each). Among LTRs, TMAO levels were independently associated with eGFR (std. ß = -0.43, p < 0.001) and iron supplementation (std. ß = 0.13, p = 0.008), and were associated with mortality (29 deaths during 8.6 years follow-up; log-rank test p = 0.017; hazard ratio of highest vs. lowest tertile 4.14, p = 0.007). In conclusion, plasma TMAO is likely elevated in stable LTRs, with impaired eGFR and iron supplementation as potential contributory factors. Our preliminary findings raise the possibility that plasma TMAO could contribute to increased mortality risk in such patients, but this need to be validated through a series of rigorous and methodical studies.


Assuntos
Biomarcadores , Transplante de Fígado , Metilaminas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Transplante de Fígado/efeitos adversos , Metilaminas/sangue , Transplantados
18.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732161

RESUMO

The Mediterranean diet (MD), rich in minimally processed plant foods and in monounsaturated fats but low in saturated fats, meat, and dairy products, represents one of the most studied diets for cardiovascular health. It has been shown, from both observational and randomized controlled trials, that MD reduces body weight, improves cardiovascular disease surrogates such as waist-to-hip ratios, lipids, and inflammation markers, and even prevents the development of fatal and nonfatal cardiovascular disease, diabetes, obesity, and other diseases. However, it is unclear whether it offers cardiovascular benefits from its individual components or as a whole. Furthermore, limitations in the methodology of studies and meta-analyses have raised some concerns over its potential cardiovascular benefits. MD is also associated with characteristic changes in the intestinal microbiota, mediated through its constituents. These include increased growth of species producing short-chain fatty acids, such as Clostridium leptum and Eubacterium rectale, increased growth of Bifidobacteria, Bacteroides, and Faecalibacterium prausnitzii species, and reduced growth of Firmicutes and Blautia species. Such changes are known to be favorably associated with inflammation, oxidative status, and overall metabolic health. This review will focus on the effects of MD on cardiovascular health through its action on gut microbiota.


Assuntos
Doenças Cardiovasculares , Dieta Mediterrânea , Microbioma Gastrointestinal , Humanos , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/etiologia
19.
Molecules ; 29(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542975

RESUMO

Supplementing fish oil is one of the strategies to reduce the risk of cardiovascular disease, the leading cause of death around the world. Contradictorily, fish oil may also contain trimethylamine-N-oxide, a recently emerged risk factor for cardiovascular disease, as well as one of its precursors, trimethylamine. A method suitable for routine quantification of trimethylamine-N-oxide and trimethylamine in fish oil with a quick and easy liquid extraction without derivatization has been developed. Liquid chromatography with tandem mass spectrometry detection was employed along with a zwitterionic hydrophilic interaction liquid chromatography column and a gradient elution with eluents containing 50 mmol/L of ammonium formate. An internal standard (triethylamine) was used for quantification by mass spectrometry with an external calibration. The assay proved high linearity in the ranges of 10 to 100 ng/mL and 100 to 1000 ng/mL for trimethylamine-N-oxide and trimethylamine, respectively. The lowest limit of quantification was determined to be 100 µg/kg for trimethylamine and 10 µg/kg for trimethylamine-N-oxide, with the limit of detection at 5 µg/kg and 0.25 µg/kg, respectively. Accuracy ranged from 106-119%. Precision was below 7% the relative standard deviation for both analytes. The method was successfully applied for the determination of trimethylamine-N-oxide and trimethylamine contents in nine commercially available liquid fish oils and three commercially available fish oil capsules, showing that trimethylamine and trimethylamine-N-oxide are not present in highly refined fish oils.


Assuntos
Doenças Cardiovasculares , Metilaminas , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Óleos de Peixe , Óxidos , Cromatografia Líquida de Alta Pressão/métodos
20.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257342

RESUMO

Resveratrol (RSV), obtained from dietary sources, has been shown to reduce trimethylamine oxide (TMAO) levels in humans, and much research indicates that TMAO is recognized as a risk factor for cardiovascular disease. Therefore, this study investigated the effects of RSV and RSV-butyrate esters (RBE) on the proliferation of co-cultured bacteria and HepG2 cell lines, respectively, and also investigated the changes in trimethylamine (TMA) and TMOA content in the medium and flavin-containing monooxygenase-3 (FMO3) gene expression. This study revealed that 50 µg/mL of RBE could increase the population percentage of Bifidobacterium longum at a rate of 53%, while the rate was 48% for Clostridium asparagiforme. In contrast, co-cultivation of the two bacterial strains effectively reduced TMA levels from 561 ppm to 449 ppm. In addition, regarding TMA-induced HepG2 cell lines, treatment with 50 µM each of RBE, 3,4'-di-O-butanoylresveratrol (ED2), and 3-O-butanoylresveratrol (ED4) significantly reduced FMO3 gene expression from 2.13 to 0.40-1.40, which would also contribute to the reduction of TMAO content. This study demonstrated the potential of RBE, ED2, and ED4 for regulating TMA metabolism in microbial co-cultures and cell line cultures, which also suggests that the resveratrol derivative might be a daily dietary supplement that will be beneficial for health promotion in the future.


Assuntos
Butiratos , Ésteres , Metilaminas , Humanos , Butiratos/farmacologia , Estudos de Viabilidade , Resveratrol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA