Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(14): e2205774119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972461

RESUMO

In the smallholder, low-input farming systems widespread in sub-Saharan Africa, farmers select and propagate crop varieties based on their traditional knowledge and experience. A data-driven integration of their knowledge into breeding pipelines may support the sustainable intensification of local farming. Here, we combine genomics with participatory research to tap into traditional knowledge in smallholder farming systems, using durum wheat (Triticum durum Desf.) in Ethiopia as a case study. We developed and genotyped a large multiparental population, called the Ethiopian NAM (EtNAM), that recombines an elite international breeding line with Ethiopian traditional varieties maintained by local farmers. A total of 1,200 EtNAM lines were evaluated for agronomic performance and farmers' appreciation in three locations in Ethiopia, finding that women and men farmers could skillfully identify the worth of wheat genotypes and their potential for local adaptation. We then trained a genomic selection (GS) model using farmer appreciation scores and found that its prediction accuracy over grain yield (GY) was higher than that of a benchmark GS model trained on GY. Finally, we used forward genetics approaches to identify marker-trait associations for agronomic traits and farmer appreciation scores. We produced genetic maps for individual EtNAM families and used them to support the characterization of genomic loci of breeding relevance with pleiotropic effects on phenology, yield, and farmer preference. Our data show that farmers' traditional knowledge can be integrated in genomics-driven breeding to support the selection of best allelic combinations for local adaptation.


Assuntos
Fazendeiros , Triticum , Feminino , Humanos , Triticum/genética , Melhoramento Vegetal , Fenótipo , Grão Comestível , Genômica
2.
BMC Plant Biol ; 24(1): 183, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475749

RESUMO

BACKGROUND: Fusarium head blight (FHB) infection results in Fusarium damaged kernels (FDK) and deoxynivalenol (DON) contamination that are downgrading factors at the Canadian elevators. Durum wheat (Triticum turgidum L. var. durum Desf.) is particularly susceptible to FHB and most of the adapted Canadian durum wheat cultivars are susceptible to moderately susceptible to this disease. However, the durum line DT696 is less susceptible to FHB than commercially grown cultivars. Little is known about genetic variation for durum wheat ability to resist FDK infection and DON accumulation. This study was undertaken to map genetic loci conferring resistance to DON and FDK resistance using a SNP high-density genetic map of a DT707/DT696 DH population and to identify SNP markers useful in marker-assisted breeding. One hundred twenty lines were grown in corn spawn inoculated nurseries near Morden, MB in 2015, 2016 and 2017 and the harvested seeds were evaluated for DON. The genetic map of the population was used in quantitative trait locus analysis performed with MapQTL.6® software. RESULTS: Four DON accumulation resistance QTL detected in two of the three years were identified on chromosomes 1 A, 5 A (2 loci) and 7 A and two FDK resistance QTL were identified on chromosomes 5 and 7 A in single environments. Although not declared significant due to marginal LOD values, the QTL for FDK on the 5 and 7 A were showing in other years suggesting their effects were real. DT696 contributed the favourable alleles for low DON and FDK on all the chromosomes. Although no resistance loci contributed by DT707, transgressive segregant lines were identified resulting in greater resistance than DT696. Breeder-friendly KASP markers were developed for two of the DON and FDK QTL detected on chromosomes 5 and 7 A. Markers flanking each QTL were physically mapped against the durum wheat reference sequence and candidate genes which might be involved in FDK and DON resistance were identified within the QTL intervals. CONCLUSIONS: The DH lines harboring the desired resistance QTL will serve as useful resources in breeding for FDK and DON resistance in durum wheat. Furthermore, breeder-friendly KASP markers developed during this study will be useful for the selection of durum wheat varieties with low FDK and DON levels in durum wheat breeding programs.


Assuntos
Fusarium , Tricotecenos , Triticum , Triticum/genética , Melhoramento Vegetal , Canadá , Doenças das Plantas/genética , Resistência à Doença/genética
3.
Plant Cell Environ ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847343

RESUMO

Wheat (Triticum aestivum L.) is an important cereal crop cultivated and consumed worldwide. Global warming-induced escalation of temperature during the seedling and grain-filling phase adversely affects productivity. To survive under elevated temperatures, most crop plants develop natural mechanisms at molecular level by activating heat shock proteins. However, other heat stress-related proteins like heat acclimatization (HA) proteins are documented in hexaploid wheat but have not been explored in detail in its diploid and tetraploid progenitors, which might help to overcome elevated temperature regimes for short periods. Our study aims to explore the potential HA genes in progenitors Triticum durum and Aegilops tauschii that perform well at higher temperatures. Seven genes were identified and phylogenetically classified into three families: K homology (KH), Chloroplast protein-enhancing stress tolerance (CEST), and heat-stress-associated 32 kDa (HSA32). Protein-protein interaction network revealed partner proteins that aid mRNA translation, protein refolding, and reactive species detoxification. Syntenic analysis displayed highly conserved relationships. RT-qPCR-based expression profiling revealed HA genes to exhibit diverse and dynamic patterns under high-temperature regimes, suggesting their critical role in providing tolerance to heat stress. The present study furnishes genetic landscape of HA genes that might help in developing climate-resilient wheat with higher acclimatization potential.

4.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674072

RESUMO

Hypoxia is one of the common abiotic stresses that negatively affects the development and productivity of agricultural crops. Quercetin is used to protect plants from oxidative stress when exposed to environmental stressors. O2 deficiency leads to impaired development and morphometric parameters in wheat varieties Orenburgskaya 22 (Triticum aestivum L.) and varieties Zolotaya (Triticum durum Desf.). Cytological analysis revealed various types of changes in the cytoplasm under conditions of hypoxia and treatment with quercetin. The most critical changes in the cytoplasm occur in the Zolotaya variety during pretreatment with quercetin followed by hypoxia, and in the Orenburgskaya 22 variety during hypoxia. Quercetin has a protective effect only on the Orenburgskaya 22 variety, and also promotes a more effective recovery after exposure to low O2 content. Hypoxia causes an increase in reactive oxygen species and activates the antioxidant system. It has been shown that the most active components of the antioxidant system in the Orenburgskaya 22 variety are MnSOD and Cu/ZnSOD, and in the Zolotaya variety GSH. We have shown that quercetin provides resistance only to the wheat genotype Orenburgskaya 22, as a protective agent against abiotic stress, which indicates the need for a comprehensive study of the effects of exogenous protectors before use in agriculture.


Assuntos
Antioxidantes , Genótipo , Quercetina , Triticum , Triticum/genética , Triticum/efeitos dos fármacos , Triticum/metabolismo , Quercetina/farmacologia , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Oxigênio/metabolismo
5.
J Sci Food Agric ; 104(1): 249-256, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552761

RESUMO

BACKGROUND: Salt has been identified as an elicitor that can increase the accumulation of phytochemicals in seedlings during the germination process. However, the salinity level required to maximize the yield of phytochemicals, particularly phenolic compounds, needs further investigation for several plant species. To address this issue, we imposed increasing levels of salinity (NaCl solutions) on the sprouting substrate of Triticum durum (var. Platone) grains, at concentrations of 0, 50, 100, 150, 200, 250, and 300 mM (0_S, 50_S, 100_S, 150_S, 200_S, 250_S, and 300_S, respectively). RESULTS: The highest NaCl doses (250_S and 300_S) significantly impacted germination performance and were excluded from further analysis. The seedlings harvested at 8 days after sowing exhibited different growth stages depending on the salinity level: wheatgrass for 0_S, early wheatgrass for 50_S, intermediate between sprout and wheatgrass for 100_S, sprout for 150_S, and very early sprout for 200_S. Furthermore, salinity induced the concentration of phenolic compounds (PhCs) in the seedlings' tissues (i.e., both roots and shoots) in a salinity-dependent manner. The highest values were observed at 200_S, with an increase of 187% of the total investigated PhCs in comparison with 0_S, averaged over shoots and roots. In particular, in 200_S, the accumulation of phenolic acids was up to fourfold higher in roots, and that of flavonoids was up to twofold higher in shoots. CONCLUSION: Our findings suggest that the use of 200 mM NaCl applied to the sprouting substrate is excessive for producing edible sprouts but may be suitable for phytochemical extraction purposes. © 2023 Society of Chemical Industry.


Assuntos
Plântula , Triticum , Triticum/química , Cloreto de Sódio/análise , Antioxidantes/química , Fenóis/química , Compostos Fitoquímicos/química , Salinidade
6.
Mol Biol Rep ; 50(4): 3885-3901, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36826681

RESUMO

PURPOSE: Wheat is an important cereal crop that is cultivated in different parts of the world. The biotic stresses are the major concerns in wheat-growing nations and are responsible for production loss globally. The change in climate dynamics makes the pathogen more virulent in foothills and tropical regions. There is growing concern about FHB in major wheat-growing nations, and until now, there has been no known potential source of resistance identified in wheat germplasm. The plant pathogen interaction activates the cascade of pathways, genes, TFs, and resistance genes. Pathogenesis-related genes' role in disease resistance is functionally validated in different plant systems. Similarly, Genomewide association Studies (GWAS) and Genomic selection (GS) are promising tools and have led to the discovery of resistance genes, genomic regions, and novel markers. Fusarium graminearum produces deoxynivalenol (DON) mycotoxins in wheat kernels, affecting wheat productivity globally. Modern technology now allows for detecting and managing DON toxin to reduce the risk to humans and animals. This review offers a comprehensive overview of the roles played by GWAS and Genomic selection (GS) in the identification of new genes, genetic variants, molecular markers and DON toxin management strategies. METHODS: The review offers a comprehensive and in-depth analysis of the function of Fusarium graminearum virulence factors in Durum wheat. The role of GWAS and GS for Fusarium Head Blight (FHB) resistance has been well described. This paper provides a comprehensive description of the various statistical models that are used in GWAS and GS. In this review, we look at how different detection methods have been used to analyze and manage DON toxin exposure. RESULTS: This review highlights the role of virulent genes in Fusarium disease establishment. The role of genome-based selection offers the identification of novel QTLs in resistant wheat germplasm. The role of GWAS and GS selection has minimized the use of population development through breeding technology. Here, we also emphasized the function of recent technological developments in minimizing the impact of DON toxins and their implications for food safety.


Assuntos
Fusarium , Triticum , Humanos , Triticum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica , Doenças das Plantas/genética
7.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069196

RESUMO

Various stressors lead to an increase in ROS and damage to plant tissues. Plants have a powerful antioxidant system (AOS), which allows them to neutralize excess ROS. We detected an intense fluorescent glow of ROS in the cells of the cap, meristem, and elongation zones in the roots of wheat Triticum aestivum (Orenburgskaya 22 variety) and Triticum durum (Zolotaya variety). An increase in ROS was accompanied by DNA breaks in the nuclei of wheat root cells, the release of cytochrome c from mitochondria into the cytoplasm, and the translocation of phosphatidylserine into the outer layer of the plasma membrane under salt stress and hypoxia. The different resistances of the two wheat varieties to different abiotic stresses were revealed. The soft wheat variety Orenburgskaya 22 showed high resistance to salt stress but sensitivity to hypoxia, and the durum wheat variety Zolotaya showed tolerance to hypoxia but high sensitivity to salt stress. Different activations of AOS components (GSH, MnSOD, Cu/ZnSOD, CAT, PX, GPX, and GST) were revealed in different wheat genotypes. The basis for the tolerance of the Zolotaya variety to hypoxia is the high content of glutathione (GSH) and the activation of glutathione-dependent enzymes. One of the mechanisms of high resistance to salt stress in the Orenburgskaya 22 variety is a decrease in the level of ROS as a result of the increased activity of the MnSOD and Cu/ZnSOD genes. Identifying the mechanisms of plant tolerance to abiotic stress is the most important task for improving breeding varieties of agricultural plants and increasing their yield.


Assuntos
Antioxidantes , Triticum , Triticum/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Estresse Salino , Estresse Fisiológico/genética , Genótipo , Glutationa/metabolismo , Hipóxia/genética
8.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887334

RESUMO

Durum wheat is strongly affected by climatic constraints such as high temperatures and drought, which frequently lead to yield reduction. Damages due to high temperatures are related to plant thermotolerance, a trait determined by two components: basal and acquired thermotolerance. In this study, the effect of drought and heat stress imposed singularly or sequentially was investigated in ten durum wheat cultivars (cvs) at the physiological and molecular level. The traits analyzed were cell membrane stability, relative water content, proline content, and expression level of several genes for heat shock proteins (HSPs). Our results indicate that drought priming can induce the acquisition of thermotolerance in most cultivars already classified as able to acquire thermotolerance by heat pre-treatment. Proline accumulation was correlated to cell membrane stability, meaning that the most thermotolerant cvs were able to accumulate higher levels of proline. Acquired thermotolerance is also due to the activation of HSP gene expression; similarly, pre-treatment with water stress was able to activate HSPs expression. The results reported indicate that water stress plays an important role in inducing thermotolerance, comparable to mild heat stress pre-treatment. This is the first report on the effect of drought stress on the acquisition of thermotolerance.


Assuntos
Secas , Termotolerância , Desidratação , Proteínas de Choque Térmico/metabolismo , Prolina/metabolismo , Estresse Fisiológico/genética , Triticum/metabolismo
9.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142289

RESUMO

Commodity crops, such as wheat and maize, are extremely dependent on chemical fertilizers, a practice contributing greatly to the increase in the contaminants in soil and water. Promising solutions are biofertilizers, i.e., microbial biostimulants that when supplemented with soil stimulate plant growth and production. Moreover, the biofertilizers can be fortified when (i) provided as multifunctional consortia and (ii) combined with biochar with a high cargo capacity. The aim of this work was to determine the molecular effects on the soil microbiome of different biofertilizers and delivery systems, highlight their physiological effects and merge the data with statistical analyses. The measurements of the physiological parameters (i.e., shoot and root biomass), transcriptomic response of genes involved in essential pathways, and characterization of the rhizosphere population were analyzed. The results demonstrated that wheat and maize supplemented with different combinations of selected microbial consortia and biochar have a positive effect on plant growth in terms of shoot and root biomass; the treatments also had a beneficial influence on the biodiversity of the indigenous rhizo-microbial community, reinforcing the connection between microbes and plants without further spreading contaminants. There was also evidence at the transcriptional level of crosstalk between microbiota and plants.


Assuntos
Triticum , Zea mays , Carvão Vegetal/química , Fertilizantes/análise , Expressão Gênica , Raízes de Plantas , Solo/química , Microbiologia do Solo , Triticum/genética , Água/metabolismo , Zea mays/metabolismo
10.
J Sci Food Agric ; 102(14): 6246-6254, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35491936

RESUMO

BACKGROUND: Conservative tillage techniques have several agro-ecological benefits for organic farming. The application of these techniques, however, can create quite a few challenges due to the increased weed competition. Here, we report the results of an organic field experiment in which the responses of wheat and weeds to no tillage (NT) were evaluated compared with conventional tillage (CT). We also tested the hypothesis that, under NT, moving up the sowing date, compared with using the ordinary sowing date for the study area, can result in increased competitiveness of the crop against weeds. Two wheat genotypes, a modern variety and an ancient landrace, were tested. RESULTS: Substantial reductions in grain yield and protein content were observed in wheat under NT than under CT when the ordinary sowing date was used. This was mainly due to the considerable increase in weed biomass under NT. The tillage system also altered the composition of weed flora, with some species favored under NT and others under CT. In general, early sowing mitigated the detrimental effect of NT on yield. The two genotypes responded differently to the treatments. The early sowing in the modern variety reduced but did not eliminate the advantages of CT over NT, whereas no appreciable differences in grain yield were observed between CT and NT in the landrace. CONCLUSION: Our results show clearly that, under organic management, using NT alone as a substitute for CT is not agronomically feasible. Moving up the sowing date and using a competitive genotype can help mitigate the negative effects of NT, but surely a more effective application of NT could be achieved by acting simultaneously on other factors of the cropping management system (e.g. crop rotation, fertilization strategy, type of seeder). © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Solo , Triticum , Agricultura/métodos , Biomassa , Grão Comestível , Triticum/genética
11.
Mycorrhiza ; 31(4): 441-454, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33893547

RESUMO

Many aspects concerning the role of arbuscular mycorrhizal (AM) fungi in plant nutrient uptake from organic sources remain unclear. Here, we investigated the contribution of AM symbiosis to N and P uptake by durum wheat after the addition of a high C:N biomass to a P-limited soil. Plants were grown in pots in the presence or absence of a multispecies AM inoculum, with (Org) or without (Ctr) the addition of 15N-labelled organic matter (OM). A further treatment, in which 15N was applied in mineral form (Ctr+N) in the same amount as that supplied in the Org treatment, was also included. Inoculation with AM had positive effects on plant growth in both control treatments (Ctr and Ctr+N), mainly linked to an increase in plant P uptake. The addition of OM, increasing the P available in the soil for the plants, resulted in a marked decrease in the contribution of AM symbiosis to plant growth and nutrient uptake, although the percentage of mycorrhization was higher in the Org treatment than in the controls. In addition, mycorrhization drastically reduced the recovery of 15N from the OM added to the soil whereas it slightly increased the N recovery from the mineral fertiliser. This suggests that plants and AM fungi probably exert a differential competition for different sources of N available in the soil. On the whole, our results provide a contribution to a better understanding of the conditions under which AM fungi can play an effective role in mitigating the negative effects of nutritional stresses in plants.


Assuntos
Micorrizas , Raízes de Plantas , Solo , Simbiose , Triticum
12.
Plant Dis ; 105(5): 1495-1504, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33797936

RESUMO

Variability of the Russian population of Puccinia triticina from durum wheat was studied with virulence and simple sequence repeat (SSR) markers. The pathogen was sampled during 2017 to 2019 in all regions with sizable durum wheat (Triticum durum) growing areas from winter (North Caucasus) and spring (Middle Volga, Ural, and West Siberia) wheat. A total of 474 isolates were tested on a set of 20 Lr-gene lines. Molecular genotypes for 105 selected isolates were determined at 11 SSR loci. Variable virulence/avirulence reaction was observed only on three Lr-gene lines, whereas just five SSR loci were polymorphic with two alleles at each. Seven different virulence phenotypes and 11 SSR genotypes were found among 474 and 105 isolates, respectively, indicating a very low variability of the pathogen. One virulence phenotype and three SSR genotypes occurred in all Russian regions. However, two phenotypes were specific to the European regions of Russia (North Caucasus and Middle Volga), while another two were found only in the Asian part of Russia (Ural and West Siberia). Significant differentiation between six populations of P. triticina from durum wheat in the Asian and European (mainly North Caucasus) regions was also shown with numerous metrics and approaches for data with and without clone correction. Relationships among the regional populations of P. triticina from durum wheat established with virulence phenotypes significantly associated with those for SSR genotypes and was similar to the relationships among the regional populations of the pathogen from common wheat.


Assuntos
Puccinia , Triticum , Genótipo , Doenças das Plantas , Federação Russa
13.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34299055

RESUMO

Fusarium culmorum is a worldwide, soil-borne plant pathogen. It causes diseases of cereals, reduces their yield, and fills the grain with toxins. The main direction of modern breeding is to select wheat genotypes the most resistant to Fusarium diseases. This study uses seedlings and plants at the anthesis stage to analyze total soluble carbohydrates, total and cell-wall bound phenolics, chlorophyll content, antioxidant activity, hydrogen peroxide content, mycotoxin accumulation, visual symptoms of the disease, and Fusarium head blight index (FHBi). These results determine the resistance of three durum wheat accessions. We identify physiological or biochemical markers of durum wheat resistance to F. culmorum. Our results confirm correlations between FHBi and mycotoxin accumulation in the grain, which results in grain yield decrease. The degree of spike infection (FHBi) may indicate accumulation mainly of deoxynivalenol and nivalenol in the grain. High catalase activity in the infected leaves could be considered a biochemical marker of durum sensitivity to this fungus. These findings allowed us to formulate a strategy for rapid evaluation of the disease severity and the selection of plants with higher level, or resistance to F. culmorum infection.


Assuntos
Biomarcadores/metabolismo , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Plântula/fisiologia , Tricotecenos/metabolismo , Triticum/fisiologia , Genótipo , Plântula/microbiologia , Triticum/classificação , Triticum/genética , Triticum/microbiologia
14.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298963

RESUMO

Cadmium is a heavy metal that can be easily accumulated in durum wheat kernels and enter the human food chain. Two near-isogenic lines (NILs) with contrasting cadmium accumulation in grains, High-Cd or Low-Cd (H-Cd NIL and L-Cd NIL, respectively), were used to understand the Cd accumulation and transport mechanisms in durum wheat roots. Plants were cultivated in hydroponic solution, and cadmium concentrations in roots, shoots and grains were quantified. To evaluate the molecular mechanism activated in the two NILs, the transcriptomes of roots were analyzed. The observed response is complex and involves many genes and molecular mechanisms. We found that the gene sequences of two basic helix-loop-helix (bHLH) transcription factors (bHLH29 and bHLH38) differ between the two genotypes. In addition, the transporter Heavy Metal Tolerance 1 (HMT-1) is expressed only in the low-Cd genotype and many peroxidase genes are up-regulated only in the L-Cd NIL, suggesting ROS scavenging and root lignification as active responses to cadmium presence. Finally, we hypothesize that some aquaporins could enhance the Cd translocation from roots to shoots. The response to cadmium in durum wheat is therefore extremely complex and involves transcription factors, chelators, heavy metal transporters, peroxidases and aquaporins. All these new findings could help to elucidate the cadmium tolerance in wheat and address future breeding programs.


Assuntos
Cádmio/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Proteínas de Plantas/biossíntese , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Triticum/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Brotos de Planta/genética , Triticum/genética
15.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235556

RESUMO

Global durum wheat consumption (Triticum durum Desf.) is ahead of its production. One reason for this is abiotic stress, e.g., drought. Breeding for resistance to drought is complicated by the lack of fast, reproducible screening techniques and the inability to routinely create defined and repeatable water stress conditions. Here, we report the first analysis of dissection of yield and yield-related traits in durum wheat in Pakistan, seeking to elucidate the genetic components of yield and agronomic traits. Analysis of several traits revealed a total of 221 (160 with logarithm of odds (LOD) > 2 ≤ 3 and 61 with LOD > 3) quantitative trait loci (QTLs) distributed on all fourteen durum wheat chromosomes, of which 109 (78 with LOD > 2 ≤ 3 and 31 with LOD > 3) were observed in 2016-17 (S1) and 112 (82 with LOD > 2 ≤ 3 and 30 with LOD > 3) were observed in 2017-18 (S2). Allelic profiles of yield QTLs on chromosome 2A and 7B indicate that allele A of Xgwm895 and allele B of Xbarc276 can enhance the Yd up to 6.16% in control and 5.27% under drought. Moreover, if combined, a yield gain of up to 11% would be possible.


Assuntos
Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Secas , Estresse Fisiológico , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
16.
Physiol Mol Biol Plants ; 26(8): 1599-1608, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32801489

RESUMO

Salt stress is a major abiotic stress causing adverse effects on plant growth and development. The aim of this study was to investigate the effect of NaCl stress on growth, stress indicator parameters (lipid peroxidation, chlorophyll content and proline content), yield, and the expression of heat shock proteins genes (Hsp17.8, Hsp26.3, Hsp70 and Hsp101) of five Jordanian durum wheat (Triticum durum) landraces. Plants were irrigated with tap water as control or 200 mM NaCl. Significant differences among the 5 Triticum durum landraces in terms of growth parameters, stress indicator parameters, and expression of heat shock proteins genes were observed. Salt stressed landraces demonstrated decreased growth, increased levels of stress indicator parameters, and upregulation in Hsp17.8, Hsp26.3, Hsp70 and Hsp101 expression. Landraces T11 and M23 showed the highest growth, lowest levels of stress indicator parameters, and high expression of heat shock protein genes under NaCl stress. Whereas, J2 and A8 landraces showed the lowest growth, highest levels of stress indicator parameters and low expression of heat shock protein genes under NaCl stress. In conclusion, NaCl stress caused significant reduction in growth parameters, increased level of lipid peroxidation and proline content and upregulation in heat shock proteins gene expression levels. Growth, stress indicator parameters and gene expression results suggest that T11 and M23 landraces are the most NaCl stress tolerant landraces and could be used to enhance the gene pool in wheat breeding programs.

17.
Phytochem Anal ; 30(5): 512-523, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31222865

RESUMO

INTRODUCTION: Mediterranean plants are characterised by a high content of bioactive secondary metabolites that play important roles in plant-plant interactions as plant growth regulators and could be useful for the development of new eco-friendly herbicides. OBJECTIVE: An NMR-based metabolomics approach was reported to seek selective phytotoxic plant extracts and putative plant-derived active molecules. METHODS: Plant extracts derived from five Mediterranean donor species (Pistacia lentiscus, Bellis sylvestris, Phleum subulatum, Petrohrhagia saxifraga and Melilotus neapolitana) were used to treat the hydroponic cultures of three receiving plants (Triticum durum, Triticum ovatum and Avena fatua). Morphological analyses of the treated receiving plants were carried out. NMR-based metabolomics was applied both to characterise the donor plant extracts and to study the effects of the treatments on the receiving plants. RESULTS: This study allowed the identification of Melilotus neapolitana and Bellis sylvestris as phytotoxic plant and good candidates for further studies. Specifically, the NMR-based metabolomics investigation showed that these species affect a specific set of metabolites (such as sugars, amino and organic acids) and therefore metabolic pathways [i.e. tricarboxylic acid (TCA) cycle, amino acid metabolism, etc.] that are crucial for the plant growth and development. Moreover, it was possible to identify the metabolite(s) probably responsible for the phytotoxicity of the active extracts. CONCLUSION: The NMR-based metabolomics approach employed in this study led to the identification of two phytotoxic plant extracts and their putative active principles. These new insights will be of paramount importance in the future to find plant derived molecules endowed with phytotoxic activities.


Assuntos
Bioensaio/métodos , Metabolômica/métodos , Extratos Vegetais/química , Plantas/química , Herbicidas/química , Herbicidas/farmacologia , Região do Mediterrâneo , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Plantas/classificação , Plantas/metabolismo , Plantas Tóxicas/química , Plantas Tóxicas/metabolismo
18.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347689

RESUMO

Synthetic hexaploid wheat (SHW; Triticum durum L. × Aegilops tauschii Coss.) is a means of introducing novel genes/genomic regions into bread wheat (T. aestivum L.) and a potential genetic resource for improving grain mineral concentrations. We quantified 10 grain minerals (Ca, Cd, Cu, Co, Fe, Li, Mg, Mn, Ni, and Zn) using an inductively coupled mass spectrometer in 123 SHWs for a genome-wide association study (GWAS). A GWAS with 35,648 single nucleotide polymorphism (SNP) markers identified 92 marker-trait associations (MTAs), of which 60 were novel and 40 were within genes, and the genes underlying 20 MTAs had annotations suggesting a potential role in grain mineral concentration. Twenty-four MTAs on the D-genome were novel and showed the potential of Ae. tauschii for improving grain mineral concentrations such as Ca, Co, Cu, Li, Mg, Mn, and Ni. Interestingly, the large number of novel MTAs (36) identified on the AB genome of these SHWs indicated that there is a lot of variation yet to be explored and to be used in the A and B genome along with the D-genome. Regression analysis identified a positive correlation between a cumulative number of favorable alleles at MTA loci in a genotype and grain mineral concentration. Additionally, we identified multi-traits and stable MTAs and recommended 13 top 10% SHWs with a higher concentration of beneficial grain minerals (Cu, Fe, Mg, Mn, Ni, and Zn), a large number of favorable alleles compared to low ranking genotypes and checks that could be utilized in the breeding program for the genetic biofortification. This study will further enhance our understanding of the genetic architecture of grain minerals in wheat and related cereals.


Assuntos
Grão Comestível/genética , Minerais/análise , Locos de Características Quantitativas , Triticum/genética , Grão Comestível/química , Minerais/metabolismo , Poliploidia
19.
Funct Integr Genomics ; 17(6): 667-685, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28550605

RESUMO

Durum wheat (Triticum turgidum var. durum Desf.) is a major world crop that is grown primarily in areas of the world that experience periodic drought, and therefore, breeding climate-resilient durum wheat is a priority. High-throughput single nucleotide polymorphism (SNP) genotyping techniques have greatly increased the power of linkage and association mapping analyses for bread wheat, but as yet there is no durum wheat-specific platform available. In this study, we evaluate the new 384HT Wheat Breeders Array for its usefulness in tetraploid wheat breeding by genotyping a breeding population of F6 hybrids, derived from multiple crosses between T. durum cultivars and wild and cultivated emmer wheat accessions. Using a combined linkage and association mapping approach, we generated a genetic map including 1345 SNP markers, and identified markers linked to 6 QTLs for coleoptile length (2), heading date (1), anthocyanin accumulation (1) and osmotic stress tolerance (2). We also developed a straightforward approach for combining genetic data from multiple families of limited size that will be useful for evaluating and mapping pre-existing breeding material.


Assuntos
Ligação Genética , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Triticum/genética , Antocianinas/genética , Antocianinas/metabolismo , Biomassa , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Genoma de Planta , Pressão Osmótica , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento
20.
J Sci Food Agric ; 97(7): 2030-2041, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27558295

RESUMO

BACKGROUND: Wild emmer wheat could serve as a source of novel variation in grain quality and stress resistance for wheat breeding. A set of Triticum durum-T. dicoccoides chromosome substitution lines [LDN(DIC)] and the parental recipient cv. Langdon grown under contrasting water and nitrogen availability in the soil was examined in this study to identify differences in grain quality traits and dough rheological properties. RESULTS: Significant genotypic variation was found among the materials for studied traits. This variation was also considerably affected by soil treatments and G × E interactions. The substitutions LDN(DIC-1A) and LDN(DIC-1B) showed separate differentiation in the composition of glutenin sub-units. The results indicated that primarily chromosome DIC-6B is stable source of an enhanced grain protein content and advantageous dough rheological properties. Similar features seem to be shown by the substitutions with the DIC-1A, DIC-2A and DIC-6A, but not under nitrogen shortage, when generally a considerable decrease was noticed in the range of genotypic variation in grain quality. CONCLUSIONS: The substitution lines, particularly those with DIC-6B and DIC-6A and to a lesser extent DIC-1A and DIC-2A, were distinguished by advantageous grain quality traits, mixing properties and dough functionality and appear to be the most promising sources of innovative genes for wheat breeding. © 2016 Society of Chemical Industry.


Assuntos
Nitrogênio/metabolismo , Triticum/química , Água/metabolismo , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Secas , Genótipo , Glutens/análise , Glutens/metabolismo , Fenótipo , Reologia , Sementes/química , Sementes/genética , Sementes/metabolismo , Triticum/genética , Triticum/metabolismo , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA