Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 286(1902): 20190345, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31064305

RESUMO

Parent sex ratio allocation has consequences for individual fitness, population dynamics, and conservation. Theory predicts that parents should adjust offspring sex ratio when the fitness returns of producing male or female offspring varies. Previous studies have assumed that only mothers are capable of biasing offspring sex ratios, but have neglected fathers, given the expectation of an equal proportion of X- and Y-chromosome-bearing (CBS) sperm in ejaculates due to sex chromosome segregation at meiosis. This assumption has been recently refuted and both paternal fertility and paternal genetic quality have been shown to bias sex ratios. Here, we simultaneously test the relative contribution of paternal, maternal, and individual genetic quality, as measured by inbreeding, on the probability of being born a son or a daughter, using pedigree and lifelong offspring sex ratio data for the eastern bongo ( Tragelaphus eurycerus isaaci). Our models showed first, that surprisingly, as individual inbreeding decreases the probability of being born male increases, second, that paternal genetic effects on sex ratio were stronger than maternal genetic effects (which were absent). Furthermore, paternal effects were opposite in sign to those predicted; father inbreeding increases the probability of having sons. Previous paternal effects have been interpreted as adaptive due to sex-specific inbreeding depression for reproductive traits. We argue that in the eastern bongo, the opposite sign of the paternal effect on sex ratios results from a reversed sex-specific inbreeding depression pattern (present for female but not male reproductive traits). We anticipate that this research will help stimulate research on evolutionary constraints to sex ratios. Finally, the results open a new avenue of research to predict sex ratio allocation in an applied conservation context. Future models of sex ratio allocation should also include the predicted inbreeding level of the offspring and paternal inbreeding levels.


Assuntos
Antílopes/genética , Herança Paterna , Reprodução/genética , Razão de Masculinidade , Animais , Feminino , Endogamia , Masculino , Modelos Biológicos
2.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855362

RESUMO

Sex ratio allocation has important fitness consequences, and theory predicts that parents should adjust offspring sex ratio in cases where the fitness returns of producing male and female offspring vary. The ability of fathers to bias offspring sex ratios has traditionally been dismissed given the expectation of an equal proportion of X- and Y-chromosome-bearing sperm (CBS) in ejaculates due to segregation of sex chromosomes at meiosis. This expectation has been recently refuted. Here we used Peromyscus leucopus to demonstrate that sex ratio is explained by an exclusive effect of the father, and suggest a likely mechanism by which male-driven sex-ratio bias is attained. We identified a male sperm morphological marker that is associated with the mechanism leading to sex ratio bias; differences among males in the sperm nucleus area (a proxy for the sex chromosome that the sperm contains) explain 22% variation in litter sex ratio. We further show the role played by the sperm nucleus area as a mediator in the relationship between individual genetic variation and sex-ratio bias. Fathers with high levels of genetic variation had ejaculates with a higher proportion of sperm with small nuclei area. This, in turn, led to siring a higher proportion of sons (25% increase in sons per 0.1 decrease in the inbreeding coefficient). Our results reveal a plausible mechanism underlying unexplored male-driven sex-ratio biases. We also discuss why this pattern of paternal bias can be adaptive. This research puts to rest the idea that father contribution to sex ratio variation should be disregarded in vertebrates, and will stimulate research on evolutionary constraints to sex ratios-for example, whether fathers and mothers have divergent, coinciding, or neutral sex allocation interests. Finally, these results offer a potential explanation for those intriguing cases in which there are sex ratio biases, such as in humans.


Assuntos
Herança Paterna , Razão de Masculinidade , Espermatozoides/fisiologia , Animais , Evolução Biológica , Feminino , Variação Genética , Masculino , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA