Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cancer Immunol Immunother ; 73(12): 245, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358493

RESUMO

Neoantigen vaccines represent an emerging and promising strategy in the field of tumor immunotherapy. Despite their potential, designing an effective neoantigen vaccine remains a challenge due to the current limitations in predicting CD4+ T cell epitopes with high accuracy. Here, we introduce a novel approach to neoantigen vaccine design that does not rely on computational prediction of CD4+ T cell epitopes. Utilizing nitrated helper T cell epitope containing p-nitrophenylalanine, termed "NitraTh epitope," we have successfully engineered a series of tumor neoantigen vaccines capable of eliciting robust neoantigen-specific immune responses. With the help of NitraTh epitope, even mutations with low predicted affinity for MHC class I molecules were successfully induced to elicit neoantigen-specific responses. In H22 cell allograft and patient-derived xenograft (PDX) liver cancer mouse models, the NitraTh epitope-based neoantigen vaccines significantly suppressed tumor progression. More strikingly, through single-cell sequencing we found that the NitraTh epitope-based neoantigen vaccines regulate macrophage reprogramming and modulate macrophages to decrease the levels of the immunosuppressive molecule prostaglandin E2 (PGE2), which in turn reshapes the tumor immunosuppressive microenvironment. In summary, NitraTh epitope-based neoantigen vaccines possess the dual effects of potently activating neoantigen-specific immunity and alleviating immunosuppression, potentially providing a new paradigm for the design of tumor neoantigen vaccines.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Imunoterapia , Vacinas Anticâncer/imunologia , Animais , Camundongos , Humanos , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Epitopos de Linfócito T/imunologia , Microambiente Tumoral/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Neoplasias/imunologia , Neoplasias/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
2.
J Transl Med ; 22(1): 315, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539235

RESUMO

BACKGROUND: The treatment for colon adenocarcinoma (COAD) faces challenges in terms of immunotherapy effectiveness due to multiple factors. Because of the high tumor specificity and immunogenicity, neoantigen has been considered a pivotal target for cancer immunotherapy. Therefore, this study aims to identify and predict the potential tumor antigens of MUC somatic mutations (MUCmut) in COAD. METHODS: Three databases of TCGA, TIMER2.0, and cBioPortal were used for a detailed evaluation of the association between MUCmut and multi-factors like tumor mutation burden (TMB), microsatellite instability (MSI), prognosis, and the tumor microenvironment within the context of total 2242 COAD patients. Next, TSNAdb and the differential agretopicity index (DAI) were utilized to predict high-confidence neopeptides for MUCmut based on 531 COAD patients' genomic information. DAI was calculated by subtraction of its predicted HLA binding affinity of the MUCmut peptide from the corresponding wild-type peptide. RESULTS: The top six mutation frequencies (14 to 2.9%) were from MUC16, MUC17, MUC5B, MUC2, MUC4 and MUC6. COAD patients with MUC16 and MUC4 mutations had longer DFS and PFS. However, patients with MUC13 and MUC20 mutations had shorter OS. Patients with the mutation of MUC16, MUC5B, MUC2, MUC4, and MUC6 exhibited higher TMB and MSI. Moreover, these mutations from the MUC family were associated with the infiltration of diverse lymphocyte cells and the expression of immune checkpoint genes. Through TSNAdb 1.0/NetMHCpan v2.8, 452 single nucleotide variants (SNVs) of MUCmut peptides were identified. Moreover, through TSNAdb2.0/NetMHCpan v4.0, 57 SNVs, 1 Q-frame shift (TS), and 157 short insertions/deletions (INDELs) of MUCmut were identified. Finally, 10 high-confidence neopeptides of MUCmut were predicted by DAI. CONCLUSIONS: Together, our findings establish the immunogenicity and therapeutic potential of mutant MUC family-derived neoantigens. Through combining the tools of TSNAdb and DAI, a group of novel MUCmut neoantigens were identified as potential targets for immunotherapy.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Mutação/genética , Antígenos de Neoplasias/metabolismo , Antígeno Ca-125/genética , Peptídeos/química , Microambiente Tumoral
3.
Trends Immunol ; 39(6): 435-437, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29598848

RESUMO

Tumors that elude infiltration by CD8+ T lymphocytes are particularly resistant to multiple forms of treatment, including immune checkpoint blockade. Stromal transforming growth factor (TGF)-ß appears to play a key role in this process, potentially constituting a target for novel combinatorial regimens tackling immune-excluded neoplasms.


Assuntos
Evasão da Resposta Imune , Fator de Crescimento Transformador beta , Linfócitos T CD8-Positivos , Neoplasias do Colo , Humanos , Fatores de Crescimento Transformadores
4.
Int J Mol Sci ; 22(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281259

RESUMO

Therapy targeting immune checkpoints represents an integral part of the treatment for patients suffering from advanced melanoma. However, the mechanisms of resistance are responsible for a lower therapeutic outcome than expected. Concerning melanoma, insufficient stimulation of the immune system by tumour neoantigens is a likely explanation. As shown previously, radiotherapy is a known option for increasing the production of tumour neoantigens and their release into the microenvironment. Consequently, neoantigens could be recognized by antigen presenting cells (APCs) and subjected to effector T lymphocytes. Enhancing the immune reaction can trigger the therapeutic response also at distant metastases, a phenomenon known as an abscopal effect (from "ab scopus", that is, away from the target). To illustrate this, we present the case of a 78-year old male treated by anti-CTLA-4/ipilimumab for metastatic melanoma. The patient received the standard four doses of ipilimumab administered every three weeks. However, the control CT scans detected disease progression in the form of axillary lymph nodes metastasis and liver metastasis two months after ipilimumab. At this stage, palliative cryotherapy of the skin metastases was initiated to alleviate the tumour burden. Surprisingly, the effect of cryotherapy was also observed in untreated metastases and deep subcutaneous metastases on the back. Moreover, we observed the disease remission of axillary lymph nodes and liver metastasis two months after the cryotherapy. The rarity of the abscopal effect suggests that even primed anti-tumour CD8+ T cells cannot overcome the tumour microenvironment's suppressive effect and execute immune clearance. However, the biological mechanism underlying this phenomenon is yet to be elucidated. The elicitation of a systemic response by cryotherapy with documented abscopal effect was rarely reported, although the immune response induction is presumably similar to a radiotherapy-induced one. The report is a combination case study and review of the abscopal effect in melanoma treated with checkpoint inhibitors.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Ipilimumab/uso terapêutico , Melanoma/secundário , Melanoma/terapia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Idoso , Células Apresentadoras de Antígenos/imunologia , Antígenos de Neoplasias/metabolismo , Crioterapia , Humanos , Masculino , Melanoma/imunologia , Modelos Imunológicos , Cuidados Paliativos , Neoplasias Cutâneas/imunologia , Resultado do Tratamento , Microambiente Tumoral/imunologia
5.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769026

RESUMO

Human immunoglobulin G (IgG) is the primary component of the human serum antibody fraction, representing about 75% of the immunoglobulins and 10-20% of the total circulating plasma proteins. Generally, IgG sequences are highly conserved, yet the four subclasses, IgG1, IgG2, IgG3, and IgG4, differ in their physiological effector functions by binding to different IgG-Fc receptors (FcγR). Thus, despite a similarity of about 90% on the amino acid level, each subclass possesses a unique manner of antigen binding and immune complex formation. Triggering FcγR-expressing cells results in a wide range of responses, including phagocytosis, antibody-dependent cell-mediated cytotoxicity, and complement activation. Textbook knowledge implies that only B lymphocytes are capable of producing antibodies, which recognize specific antigenic structures derived from pathogens and infected endogenous or tumorigenic cells. Here, we review recent discoveries, including our own observations, about misplaced IgG expression in tumor cells. Various studies described the presence of IgG in tumor cells using immunohistology and established correlations between high antibody levels and promotion of cancer cell proliferation, invasion, and poor clinical prognosis for the respective tumor patients. Furthermore, blocking tumor-cell-derived IgG inhibited tumor cells. Tumor-cell-derived IgG might impede antigen-dependent cellular cytotoxicity by binding antigens while, at the same time, lacking the capacity for complement activation. These findings recommend tumor-cell-derived IgG as a potential therapeutic target. The observed uniqueness of Ig heavy chains expressed by tumor cells, using PCR with V(D)J rearrangement specific primers, suggests that this specific part of IgG may additionally play a role as a potential tumor marker and, thus, also qualify for the neoantigen category.


Assuntos
Imunoglobulina G/imunologia , Neoplasias/imunologia , Animais , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linfócitos B/imunologia , Ativação do Complemento/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Fagocitose/imunologia , Receptores de IgG/imunologia
6.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639014

RESUMO

The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.


Assuntos
Antineoplásicos/efeitos adversos , Imunidade/efeitos dos fármacos , Imunidade/efeitos da radiação , Neoplasias/complicações , Neoplasias/imunologia , Radiação Ionizante , Radioterapia/efeitos adversos , Animais , Antineoplásicos/uso terapêutico , Biomarcadores , Gerenciamento Clínico , Suscetibilidade a Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Humanos , Modelos Animais , Neoplasias/terapia , Lesões por Radiação/etiologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Radioterapia/métodos
7.
Immunol Rev ; 280(1): 220-230, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29027232

RESUMO

Ionizing irradiation has been extensively employed for the clinical management of solid tumors, with therapeutic or palliative intents, for decades. Until recently, radiation therapy (RT) was believed to mediate antineoplastic activity mostly (if not only) as a consequence of cancer cell-intrinsic effects. Indeed, the macromolecular damage imposed to malignant cells by RT initiates one or multiple signal transduction cascades that drive a permanent proliferative arrest (cellular senescence) or regulated cell death. Both these phenomena show a rather linear dose-response correlation. However, RT also mediates consistent immunological activity, not only as an "on-target effect" originating within irradiated cancer cells, but also as an "off-target effect" depending on the interaction between RT and stromal, endothelial, and immune components of the tumor microenvironment. Interestingly, the immunological activity of RT does not exhibit linear dose-response correlation. Here, we discuss the mechanisms whereby RT alters the capacity of the immune system to recognize and eliminate irradiated cancer cells, either as an "on-target" or as on "off-target" effect. In particular, we discuss the antagonism between the immunostimulatory and immunosuppressive effects of RT as we delineate combinatorial strategies to boost the former at the expenses of the latter.


Assuntos
Morte Celular , Citotoxicidade Imunológica , Imunidade , Neoplasias/radioterapia , Animais , Antígenos de Neoplasias/imunologia , Autofagia , Terapia Combinada , Humanos , Neoplasias/imunologia , Radiação Ionizante , Transdução de Sinais , Microambiente Tumoral
8.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171940

RESUMO

T cell engineering with antigen-specific T cell receptors (TCRs) has allowed the generation of increasingly specific, reliable, and versatile T cell products with near-physiological features. However, a broad applicability of TCR-based therapies in cancer is still limited by the restricted number of TCRs, often also of suboptimal potency, available for clinical use. In addition, targeting of tumor neoantigens with TCR-engineered T cell therapy moves the field towards a highly personalized treatment, as tumor neoantigens derive from somatic mutations and are extremely patient-specific. Therefore, relevant TCRs have to be de novo identified for each patient and within a narrow time window. The naïve repertoire of healthy donors would represent a reliable source due to its huge diverse TCR repertoire, which theoretically entails T cells for any antigen specificity, including tumor neoantigens. As a challenge, antigen-specific naïve T cells are of extremely low frequency and mostly of low functionality, making the identification of highly functional TCRs finding a "needle in a haystack." In this review, we present the technological advancements achieved in high-throughput mapping of patient-specific neoantigens and corresponding cognate TCRs and how these platforms can be used to interrogate the naïve repertoire for a fast and efficient identification of rare but therapeutically valuable TCRs for personalized adoptive T cell therapy.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Neoplasias/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Imunoterapia Adotiva/tendências , Neoplasias/genética , Medicina de Precisão/métodos , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
9.
Hum Vaccin Immunother ; 20(1): 2303799, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38346926

RESUMO

Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Antígenos de Neoplasias/genética , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Mutação
10.
Front Immunol ; 14: 1299064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274827

RESUMO

Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.


Assuntos
Glioma , Microambiente Tumoral , Humanos , Qualidade de Vida , Glioma/terapia , Sistema Nervoso Central , Imunoterapia
11.
Comput Biol Med ; 164: 107247, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454505

RESUMO

The transport of peptides from the cytoplasm to the endoplasmic reticulum (ER) by transporters associated with antigen processing (TAP) is a critical step in the intracellular presentation of cytotoxic T lymphocyte (CTL) epitopes. The development and application of computational methods, especially deep learning methods and new neural network strategies that can automatically learn feature representations with limited knowledge, provide an opportunity to develop fast and efficient methods to identify TAP-binding peptides. Herein, this study presents a comprehensive analysis of TAP-binding peptide sequences to derive TAP-binding motifs and preferences for N-terminal and C-terminal amino acids. A novel recurrent neural network (RNN)-based method called DeepTAP, using bidirectional gated recurrent unit (BiGRU), was developed for the accurate prediction of TAP-binding peptides. Our results demonstrated that DeepTAP achieves an optimal balance between prediction precision and false positives, outperforming other baseline models. Furthermore, DeepTAP significantly improves the prediction accuracy of high-confidence neoantigens, especially the top-ranked ones, making it a valuable tool for researchers studying antigen presentation processes and T-cell epitope screening. DeepTAP is freely available at https://github.com/zjupgx/deeptap and https://pgx.zju.edu.cn/deeptap.


Assuntos
Apresentação de Antígeno , Neoplasias , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Peptídeos/metabolismo , Epitopos de Linfócito T , Redes Neurais de Computação
12.
Front Oncol ; 13: 1147590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035178

RESUMO

Hereditary cancer syndromes (HCS) account for 5~10% of all cancer diagnosis. Lynch syndrome (LS) is one of the most common HCS, caused by germline mutations in the DNA mismatch repair (MMR) genes. Even with prospective cancer surveillance, LS is associated with up to 50% lifetime risk of colorectal, endometrial, and other cancers. While significant progress has been made in the timely identification of germline pathogenic variant carriers and monitoring and early detection of precancerous lesions, cancer-risk reduction strategies are still centered around endoscopic or surgical removal of neoplastic lesions and susceptible organs. Safe and effective cancer prevention strategies are critically needed to improve the life quality and longevity of LS and other HCS carriers. The era of precision oncology driven by recent technological advances in tumor molecular profiling and a better understanding of genetic risk factors has transformed cancer prevention approaches for at-risk individuals, including LS carriers. MMR deficiency leads to the accumulation of insertion and deletion mutations in microsatellites (MS), which are particularly prone to DNA polymerase slippage during DNA replication. Mutations in coding MS give rise to frameshift peptides (FSP) that are recognized by the immune system as neoantigens. Due to clonal evolution, LS tumors share a set of recurrent and predictable FSP neoantigens in the same and in different LS patients. Cancer vaccines composed of commonly recurring FSP neoantigens selected through prediction algorithms have been clinically evaluated in LS carriers and proven safe and immunogenic. Preclinically analogous FSP vaccines have been shown to elicit FSP-directed immune responses and exert tumor-preventive efficacy in murine models of LS. While the immunopreventive efficacy of "off-the-shelf" vaccines consisting of commonly recurring FSP antigens is currently investigated in LS clinical trials, the feasibility and utility of personalized FSP vaccines with individual HLA-restricted epitopes are being explored for more precise targeting. Here, we discuss recent advances in precision cancer immunoprevention approaches, emerging enabling technologies, research gaps, and implementation barriers toward clinical translation of risk-tailored prevention strategies for LS carriers. We will also discuss the feasibility and practicality of next-generation cancer vaccines that are based on personalized immunogenic epitopes for precision cancer immunoprevention.

13.
Glob Chall ; 6(3): 2100051, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35284089

RESUMO

Today, an unprecedented understanding of the cancer genome, along with major breakthroughs in oncoimmunotherapy, and a resurgence of nucleic acid vaccines against cancer are being achieved. However, in most cases, the immune system response is still insufficient to react against cancer, especially in those tumors showing low mutational burden. One way to counteract tumor escape can be the induction of bacterial translocation, a phenomenon associated with autoimmune diseases which consists of a leakage in the colonic mucosa barrier, causing the access of gut bacteria to sterile body compartments such as blood. Certain commensal or live-attenuated bacteria can be engineered in such a way as to contain nucleic acids coding for tumor neoantigens previously selected from individual tumor RNAseq data. Hypothetically, these modified bacteria, previously administered orally to a cancer patient, can be translocated by several compounds acting on colonic mucosa, thus releasing neoantigens in a systemic environment in the context of an acute inflammation. Several strategies for selecting neoantigens, suitable bacteria strains, genetic constructs, and translocation inducers to achieve tumor-specific activations of CD4 and CD8 T-cells are discussed in this hypothesis.

14.
Front Oncol ; 12: 941868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439494

RESUMO

Objectives: Adenocarcinoma at the gastroesophageal junction (ACGEJ) refers to a malignant tumor that occurs at the esophagogastric junction. Despite some progress in targeted therapies for HER2, FGFR2, EGFR, MET, Claudin 18.2 and immune checkpoints in ACGEJ tumors, the 5-year survival rate of patients remains poor. Thus, it is urgent to explore genomic alterations and neoantigen characteristics of tumors and identify CD8+ T-cell infiltration-associated genes to find potential therapeutic targets and develop a risk model to predict ACGEJ patients' overall survival (OS). Methods: Whole-exome sequencing (WES) was performed on 55 paired samples from Chinese ACGEJ patients. Somatic mutations and copy number variations were detected by Strelka2 and FACETS, respectively. SigProfiler and SciClone were employed to decipher the mutation signature and clonal structure of each sample, respectively. Neoantigens were predicted using the MuPeXI pipeline. RNA sequencing (RNA-seq) data of ACGEJ samples from our previous studies and The Cancer Genome Atlas (TCGA) were used to identify genes significantly associated with CD8+ T-cell infiltration by weighted gene coexpression network analysis (WGCNA). To construct a risk model, we conducted LASSO and univariate and multivariate Cox regression analyses. Results: Recurrent MAP2K7, RNF43 and RHOA mutations were found in ACGEJ tumors. The COSMIC signature SBS17 was associated with ACGEJ progression. CCNE1 and VEGFA were identified as putative CNV driver genes. PI3KCA and TP53 mutations conferred selective advantages to cancer cells. The Chinese ACGEJ patient neoantigen landscape was revealed for the first time, and 58 potential neoantigens common to TSNAdb and IEDB were identified. Compared with Siewert type II samples, Siewert type III samples had significant enrichment of the SBS17 signature, a lower TNFRSF14 copy number, a higher proportion of samples with complex clonal architecture and a higher neoantigen load. We identified 10 important CD8+ T-cell infiltration-related Hub genes (CCL5, CD2, CST7, GVINP1, GZMK, IL2RB, IKZF3, PLA2G2D, P2RY10 and ZAP70) as potential therapeutic targets from the RNA-seq data. Seven CD8+ T-cell infiltration-related genes (ADAM28, ASPH, CAMK2N1, F2R, STAP1, TP53INP2, ZC3H3) were selected to construct a prognostic model. Patients classified as high risk based on this model had significantly worse OS than low-risk patients, which was replicated in the TCGA-ACGEJ cohort. Conclusions: This study provides new neoantigen-based immunotherapeutic targets for ACGEJ treatment and effective disease prognosis biomarkers.

15.
Expert Opin Investig Drugs ; 31(12): 1339-1357, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36537209

RESUMO

INTRODUCTION: Fallopian tube carcinoma (FC) as a single entity is a rare disease. Although its diagnosis is increasing thanks to the widespread use of prophylactic salpingectomy, there are no clinical trials exclusively designed for FC. AREAS COVERED: This review aims at identifying the most promising trials and future therapeutic pathways in the setting of FC. EXPERT OPINION: Hot topics in FC treatment include the consequences of using PARP inhibitors (PARPi) as first-line therapy, ways to overcome platinum resistance, and the role of immunotherapy. Patient selection is a key point for future development of target therapies. Next-generation sequencing (NGS) is one of the most investigated technologies both for drug discovery and identification of reverse mutations, involved in resistance to PARPi and platinum. New, promising molecular targets are emerging. Notwithstanding the disappointing outcomes when used by itself, immunotherapy in FC treatment could still have a role in combination with other agents, exploiting synergistic effects at the molecular level. The development of cancer vaccines is currently hampered by the high variability of tumor neoantigens in FC. Genomic profiling could be a solution, allowing the synthesis of individualized vaccines.


Assuntos
Neoplasias , Platina , Feminino , Humanos , Platina/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Mutação , Imunoterapia
16.
Adv Drug Deliv Rev ; 178: 113962, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481029

RESUMO

Although PD-1 and CTLA-4 inhibitors have proven successful in a range of malignancies, there are subsets of patients that do not respond to these agents due to upregulation of adaptive and innate resistance mechanisms by the tumor and its surrounding microenvironment. As new immunotherapeutic strategies are developed, there is a need for rational implementation of novel immunotherapy combinations that target complementary mechanisms of immunotherapy resistance intrinsic to each patient and tumor type. In this short review, we cover mechanisms by which tumors evade the immune system, as well as summarize available clinical data on emerging therapeutic agents that target these defense mechanisms. Rational implementation of combination immunotherapy targeting patient- and malignancy-specific immune evasion mechanisms may thus lead to enhanced response rates and allow immunotherapy to be effective even in tumors that are historically considered poorly responsive to immunotherapy.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia , Neoplasias/terapia , Humanos , Neoplasias/imunologia
17.
Comput Struct Biotechnol J ; 19: 4941-4953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527198

RESUMO

MicroRNA (miRNA) deregulation plays a critical role in the heterogeneous development of prostate cancer (PCa) by tuning mRNA levels. Herein, we aimed to characterize the molecular features of PCa by clustering the miRNA-regulated transcriptome with non-negative matrix factorization. Using 478 PCa samples from The Cancer Genome Atlas, four molecular subtypes (S-I, S-II, S-III, and S-IV) were identified and validated in two merged microarray and RNAseq datasets with 656 and 252 samples, respectively. Interestingly, the four subtypes showed distinct clinical and biological features after comprehensive analyses of clinical features, multiomic profiles, immune infiltration, and drug sensitivity. S-I is basal/stem/mesenchymal-like and immune-excluded with marked transforming growth factor ß, epithelial-mesenchymal transition and hypoxia signals, increased sensitivity to olaparib, and intermediate prognosis. S-II is luminal/metabolism-active and responsive to androgen deprivation therapy with frequent TMPRSS2-ERG fusion and a good prognosis. S-III is characterized by moderate proliferative and metabolic activity, sensitivity to taxane-based chemotherapy, and intermediate prognosis. S-IV is highly proliferative with moderate EMT and stemness, frequent deletions of TP53, PTEN and RB, and the poorest prognosis; it is also immune-inflamed and sensitive to anti-PD-L1 therapy. Overall, based on miRNA-regulated gene profiles, this study identified four distinct PCa subtypes that could improve risk stratification at diagnosis and provide therapeutic guidance.

18.
J Mol Med (Berl) ; 97(8): 1139-1153, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31161312

RESUMO

Intrinsic genetic instability of tumor cells leads to continuous production of mutated proteins referred to as tumor-specific neoantigens. Generally, they are recognized as nonself products by the host immune system. However, an effective adaptive response clearing neoantigen-expressing cells is lost in tumor diseases. Most advanced therapeutic strategies aim at inducing neoantigen-specific immune activation through personalized approaches. They include tumor cell exome sequencing, human leukocyte antigen (HLA) typing, synthesis, and injection of peptides/RNA with adjuvants. Here, we propose an innovative method to induce a CD8+ T cytotoxic lymphocyte (CTL) immune response against tumor neoantigens bypassing the steps needed in current therapeutic strategies of personalized vaccination. We assumed that tumor cells can be the most efficient and precise factory of major histocompatibility complex (MHC) class I-associated, tumor neoantigen-derived peptides. Hence, endowing tumor cells with professional antigen-presenting functions would prime CD8+ T lymphocytes towards a response against nonself tumor antigens. To explore this possibility, both adenocarcinoma and melanoma human cells were engineered to express both CD80 and CD86 costimulatory molecules. HLA-matched lymphocytes were then primed through cocultivation with the engineered tumor cells. The generation of tumor-specific CD8+ T lymphocytes was tested through the combined analysis of cell activation markers, formation of immunologic synapses, generation of tumor antigen-specific CD8+ T lymphocytes, and cytotoxic activity. Our data consistently indicate that tumor cells endowed with professional antigen-presenting functions can generate an effective tumor-specific CTL immune response. This finding may open avenues towards the development of innovative antitumor immunotherapies. KEY MESSAGES: We established a novel method to induce antitumor CTLs without a need to identify TAAs and/or tumor neoantigens. This strategy relies on transducing tumor cells with a retroviral vector expressing both CD80 and CD86. In this way, tumor cells prime naïve CD8+ T lymphocytes in a way that CTLs killing the same tumor cells are generated. These findings open the way towards preclinical assays in the perspective to introduce this antitumor immunotherapy strategy in clinic.


Assuntos
Apresentação de Antígeno , Antígenos de Neoplasias , Vacinas Anticâncer , Citotoxicidade Imunológica , Células Dendríticas , Neoplasias , Linfócitos T Citotóxicos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células HEK293 , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia
20.
Oncoimmunology ; 7(12): e1511506, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524907

RESUMO

Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA