Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Cell ; 84(14): 2785-2796.e4, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936361

RESUMO

The bacterial world offers diverse strains for understanding medical and environmental processes and for engineering synthetic biological chassis. However, genetically manipulating these strains has faced a long-standing bottleneck: how to efficiently transform DNA. Here, we report imitating methylation patterns rapidly in TXTL (IMPRINT), a generalized, rapid, and scalable approach based on cell-free transcription-translation (TXTL) to overcome DNA restriction, a prominent barrier to transformation. IMPRINT utilizes TXTL to express DNA methyltransferases from a bacterium's restriction-modification systems. The expressed methyltransferases then methylate DNA in vitro to match the bacterium's DNA methylation pattern, circumventing restriction and enhancing transformation. With IMPRINT, we efficiently multiplex methylation by diverse DNA methyltransferases and enhance plasmid transformation in gram-negative and gram-positive bacteria. We also develop a high-throughput pipeline that identifies the most consequential methyltransferases, and we apply IMPRINT to screen a ribosome-binding site library in a hard-to-transform Bifidobacterium. Overall, IMPRINT can enhance DNA transformation, enabling the use of sophisticated genetic manipulation tools across the bacterial world.


Assuntos
Sistema Livre de Células , Metilação de DNA , Biossíntese de Proteínas , Transcrição Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Transformação Bacteriana , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Mol Cell ; 82(6): 1210-1224.e6, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216669

RESUMO

CRISPR-Cas biology and technologies have been largely shaped to date by the characterization and use of single-effector nucleases. By contrast, multi-subunit effectors dominate natural systems, represent emerging technologies, and were recently associated with RNA-guided DNA transposition. This disconnect stems from the challenge of working with multiple protein subunits in vitro and in vivo. Here, we apply cell-free transcription-translation (TXTL) systems to radically accelerate the characterization of multi-subunit CRISPR effectors and transposons. Numerous DNA constructs can be combined in one TXTL reaction, yielding defined biomolecular readouts in hours. Using TXTL, we mined phylogenetically diverse I-E effectors, interrogated extensively self-targeting I-C and I-F systems, and elucidated targeting rules for I-B and I-F CRISPR transposons using only DNA-binding components. We further recapitulated DNA transposition in TXTL, which helped reveal a distinct branch of I-B CRISPR transposons. These capabilities will facilitate the study and exploitation of the broad yet underexplored diversity of CRISPR-Cas systems and transposons.


Assuntos
Sistemas CRISPR-Cas , Endonucleases , Sistema Livre de Células/metabolismo , DNA/genética , Endonucleases/genética , RNA/metabolismo
3.
Mol Cell ; 69(1): 146-157.e3, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29304331

RESUMO

CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses.


Assuntos
Sistemas CRISPR-Cas/genética , Sistema Livre de Células/metabolismo , Escherichia coli/genética , Engenharia Genética/métodos , Biossíntese de Proteínas/genética , Transcrição Gênica/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA Bacteriano/genética , Endonucleases/metabolismo , Oryza/genética , RNA Guia de Cinetoplastídeos/genética
4.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239830

RESUMO

Binary light-up aptamers are intriguing and emerging tools with potential in different fields. Herein, we demonstrate the versatility of a split Broccoli aptamer system able to turn on the fluorescence signal only in the presence of a complementary sequence. First, an RNA three-way junction harbouring the split system is assembled in an E. coli-based cell-free TX-TL system where the folding of the functional aptamer is demonstrated. Then, the same strategy is introduced into a 'bio-orthogonal' hybrid RNA/DNA rectangle origami characterized by atomic force microscopy: the activation of the split system through the origami self-assembly is demonstrated. Finally, our system is successfully used to detect the femtomoles of a Campylobacter spp. DNA target sequence. Potential applications of our system include the real-time monitoring of the self-assembly of nucleic-acid-based devices in vivo and of the intracellular delivery of therapeutic nanostructures, as well as the in vitro and in vivo detection of different DNA/RNA targets.


Assuntos
Aptâmeros de Nucleotídeos , Brassica , Nanoestruturas , RNA/genética , Brassica/genética , Escherichia coli/genética , Aptâmeros de Nucleotídeos/química , DNA/química , Nanoestruturas/química , Conformação de Ácido Nucleico
5.
Methods ; 172: 42-50, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31121300

RESUMO

The characterization of CRISPR-Cas immune systems in bacteria was quickly followed by the discovery of anti-CRISPR proteins (Acrs) in bacteriophages. These proteins block different steps of CRISPR-based immunity and, as some inhibit Cas nucleases, can offer tight control over CRISPR technologies. While Acrs have been identified against a few CRISPR-Cas systems, likely many more await discovery and application. Here, we report a rapid and scalable method for characterizing putative Acrs against Cas nucleases using an E. coli-derived cell-free transcription-translation system. Using known Acrs against type II Cas9 nucleases as models, we demonstrate how the method can be used to measure the inhibitory activity of individual Acrs in under two days. We also show how the method can overcome non-specific inhibition of gene expression observed for some Acrs. In total, the method should accelerate the interrogation and application of Acrs as CRISPR-Cas inhibitors.


Assuntos
Proteína 9 Associada à CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas/genética , Ensaios Enzimáticos/métodos , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas Virais/metabolismo , Bacteriófagos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Ensaios Enzimáticos/instrumentação , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo , Fluorescência , Edição de Genes/métodos , Genes Reporter/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Biossíntese de Proteínas , Transcrição Gênica
6.
Arch Biochem Biophys ; 674: 108045, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326518

RESUMO

The T7 bacteriophage RNA polymerase (T7 RNAP) serves as a model for understanding RNA synthesis, as a tool for protein expression, and as an actuator for synthetic gene circuit design in bacterial cells and cell-free extract. T7 RNAP is an attractive tool for orthogonal protein expression in bacteria owing to its compact single subunit structure and orthogonal promoter specificity. Understanding the mechanisms underlying T7 RNAP regulation is important to the design of engineered T7-based transcription factors, which can be used in gene circuit design. To explore regulatory mechanisms for T7 RNAP-driven expression, we developed a rapid and cost-effective method to characterize engineered T7-based transcription factors using cell-free protein synthesis and an acoustic liquid handler. Using this method, we investigated the effects of the tetracycline operator's proximity to the T7 promoter on the regulation of T7 RNAP-driven expression. Our results reveal a mechanism for regulation that functions by interfering with the transition of T7 RNAP from initiation to elongation and validates the use of the method described here to engineer future T7-based transcription factors.


Assuntos
Bacteriófago T7/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Engenharia Genética/métodos , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas Virais/metabolismo , Acústica , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Regiões Operadoras Genéticas , Reação em Cadeia da Polimerase , Iniciação da Transcrição Genética , Proteínas Virais/genética
7.
RNA Biol ; 16(4): 404-412, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30252595

RESUMO

The Class 2 Type V-A CRISPR effector protein Cas12a/Cpf1 has gained widespread attention in part because of the ease in achieving multiplexed genome editing, gene regulation, and DNA detection. Multiplexing derives from the ability of Cas12a alone to generate multiple guide RNAs from a transcribed CRISPR array encoding alternating conserved repeats and targeting spacers. While array design has focused on how to optimize guide-RNA sequences, little attention has been paid to sequences outside of the CRISPR array. Here, we show that a structured hairpin located immediately downstream of the 3' repeat interferes with utilization of the adjacent encoded guide RNA by Francisella novicida (Fn)Cas12a. We first observed that a synthetic Rho-independent terminator immediately downstream of an array impaired DNA cleavage based on plasmid clearance in E. coli and DNA cleavage in a cell-free transcription-translation (TXTL) system. TXTL-based cleavage assays further revealed that inhibition was associated with incomplete processing of the transcribed CRISPR array and could be attributed to the stable hairpin formed by the terminator. We also found that the inhibitory effect partially extended to upstream spacers in a multi-spacer array. Finally, we found that removing the terminal repeat from the array increased the inhibitory effect, while replacing this repeat with an unprocessable terminal repeat from a native FnCas12a array restored cleavage activity directed by the adjacent encoded guide RNA. Our study thus revealed that sequences surrounding a CRISPR array can interfere with the function of a CRISPR nuclease, with implications for the design and evolution of CRISPR arrays.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Francisella/genética , Sequências Repetidas Terminais/genética , Clivagem do DNA , DNA Intergênico/genética , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA/genética , RNA Guia de Cinetoplastídeos/metabolismo , Fator Rho/metabolismo , Terminação da Transcrição Genética
8.
Methods ; 143: 48-57, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29486239

RESUMO

The RNA-guided nucleases derived from the CRISPR-Cas systems in bacteria and archaea have found numerous applications in biotechnology, including genome editing, imaging, and gene regulation. However, the discovery of novel Cas nucleases has outpaced their characterization and subsequent exploitation. A key step in characterizing Cas nucleases is determining which protospacer-adjacent motif (PAM) sequences they recognize. Here, we report advances to an in vitro method based on an E. coli cell-free transcription-translation system (TXTL) to rapidly elucidate PAMs recognized by Cas nucleases. The method obviates the need for cloning Cas nucleases or gRNAs, does not require the purification of protein or RNA, and can be performed in less than a day. To advance our previously published method, we incorporated an internal GFP cleavage control to assess the extent of library cleavage as well as Sanger sequencing of the cleaved library to assess PAM depletion prior to next-generation sequencing. We also detail the methods needed to construct all relevant DNA constructs, and how to troubleshoot the assay. We finally demonstrate the technique by determining PAM sequences recognized by the Neisseria meningitidis Cas9, revealing subtle sequence requirements of this highly specific PAM. The overall method offers a rapid means to identify PAMs recognized by diverse CRISPR nucleases, with the potential to greatly accelerate our ability to characterize and harness novel CRISPR nucleases across their many uses.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/genética , Análise de Sequência de DNA/métodos , Motivos de Aminoácidos , Biotecnologia/métodos , Proteína 9 Associada à CRISPR/genética , Biologia Computacional/métodos , Escherichia coli , Biblioteca Gênica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neisseria meningitidis , Plasmídeos/genética , Biossíntese de Proteínas/genética , RNA Guia de Cinetoplastídeos/genética , Análise de Sequência de DNA/instrumentação , Transcrição Gênica/genética
9.
Int J Mol Sci ; 21(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877895

RESUMO

The cyclic GMP-AMP synthase (cGAS) catalyzes the synthesis of the multifunctional second messenger, cGAMP, in metazoans. Although numerous cGAS homologues are predicted in protein databases, the catalytic activity towards cGAMP synthesis has been proven for only four of them. Therefore, we selected five novel and yet uncharacterized cGAS homologues, which cover a broad range in the field of vertebrates. Cell-free protein synthesis (CFPS) was used for a pre-screening to investigate if the cGAS genes originating from higher organisms can be efficiently expressed in a bacterial expression system. As all tested cGAS variants were expressible, enzymes were synthesized in vivo to supply higher amounts for a subsequent in vitro activity assay. The assays were carried out with purified enzymes and revealed vast differences in the activity of the homologues. For the first time, the cGAS homologues from the Przewalski's horse, naked mole-rat, bald eagle, and zebrafish were proven to catalyze the synthesis of cGAMP. The extension of the list of described cGAS variants enables the acquisition of further knowledge about the structural and molecular mechanism of cGAS, potentially leading to functional improvement of the enzyme.


Assuntos
Regulação Enzimológica da Expressão Gênica , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Biossíntese de Proteínas , Animais , Biocatálise , Sistema Livre de Células , Águias/genética , Águias/metabolismo , Cavalos/genética , Cavalos/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Nucleotidiltransferases/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Biotechnol Bioeng ; 114(9): 2137-2141, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28475211

RESUMO

Escherichia coli cell-free transcription-translation (TXTL) systems offer versatile platforms for advanced biomanufacturing and for prototyping synthetic biological parts and devices. Production and testing could be accelerated with the use of linear DNA, which can be rapidly and cheaply synthesized. However, linear DNA is efficiently degraded in TXTL preparations from E. coli. Here, we show that double-stranded DNA encoding χ sites-eight base-pair sequences preferentially bound by the RecBCD recombination machinery-stabilizes linear DNA and greatly enhances the TXTL-based expression and activity of a fluorescent reporter gene, simple regulatory cascades, and T7 bacteriophage particles. The χ-site DNA and the DNA-binding λ protein Gam yielded similar enhancements, and DNA with as few as four χ sites was sufficient to ensure robust gene expression in TXTL. Given the affordability and scalability of producing the short χ-site DNA, this generalized strategy is expected to advance the broad use of TXTL systems across its many applications. Biotechnol. Bioeng. 2017;114: 2137-2141. © 2017 Wiley Periodicals, Inc.


Assuntos
DNA Bacteriano/genética , Escherichia coli/genética , Exodesoxirribonuclease V/genética , Regulação Bacteriana da Expressão Gênica/genética , Engenharia Genética/métodos , Biossíntese de Proteínas/genética , Transcrição Gênica/genética , Sistema Livre de Células/fisiologia
11.
Methods ; 86: 60-72, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26022922

RESUMO

A central goal of synthetic biology is to engineer cellular behavior by engineering synthetic gene networks for a variety of biotechnology and medical applications. The process of engineering gene networks often involves an iterative 'design-build-test' cycle, whereby the parts and connections that make up the network are built, characterized and varied until the desired network function is reached. Many advances have been made in the design and build portions of this cycle. However, the slow process of in vivo characterization of network function often limits the timescale of the testing step. Cell-free transcription-translation (TX-TL) systems offer a simple and fast alternative to performing these characterizations in cells. Here we provide an overview of a cell-free TX-TL system that utilizes the native Escherichia coli TX-TL machinery, thereby allowing a large repertoire of parts and networks to be characterized. As a way to demonstrate the utility of cell-free TX-TL, we illustrate the characterization of two genetic networks: an RNA transcriptional cascade and a protein regulated incoherent feed-forward loop. We also provide guidelines for designing TX-TL experiments to characterize new genetic networks. We end with a discussion of current and emerging applications of cell free systems.


Assuntos
Sistema Livre de Células , Redes Reguladoras de Genes , Biossíntese de Proteínas , Transcrição Gênica , Biotecnologia/métodos , Escherichia coli , Regiões Promotoras Genéticas , RNA/química , RNA/genética
12.
ACS Synth Biol ; 13(2): 530-537, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38319019

RESUMO

In vitro transcription-translation (TX-TL) can enable faster engineering of biological systems. This speed-up can be significant, especially in difficult-to-transform chassis. This work shows the successful development of TX-TL systems using three soil-derived wild-type Pseudomonads known to promote plant growth: Pseudomonas synxantha, Pseudomonas chlororaphis, and Pseudomonas aureofaciens. All three species demonstrated multiple sonication, runoff, and salt conditions producing detectable protein synthesis. One of these new TX-TL systems, P. synxantha, demonstrated a maximum protein yield of 2.5 µM at 125 proteins per DNA template, a maximum protein synthesis rate of 20 nM/min, and a range of DNA concentrations with a linear correspondence with the resulting protein synthesis. A set of different constitutive promoters driving mNeonGreen expression were tested in TX-TL and integrated into the genome, showing similar normalized strengths for in vivo and in vitro fluorescence. This correspondence between the TX-TL-derived promoter strength and the in vivo promoter strength indicates that these lysate-based cell-free systems can be used to characterize and engineer biological parts without genomic integration, enabling a faster design-build-test cycle.


Assuntos
Biossíntese de Proteínas , Transcrição Gênica , Biossíntese de Proteínas/genética , Sistema Livre de Células/metabolismo , Escherichia coli/genética , DNA/metabolismo
13.
Methods Mol Biol ; 2760: 447-461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468103

RESUMO

Cell-free transcription-translation (TXTL) enables achieving an ever-growing number of applications, ranging from the rapid characterization of DNA parts to the production of biologics. As TXTL systems gain in versatility and efficacy, larger DNAs can be expressed in vitro extending the scope of cell-free biomanufacturing to new territories. The demonstration that complex entities such as infectious bacteriophages can be synthesized from their genomes in TXTL reactions opens new opportunities, especially for biomedical applications. Over the last century, phages have been instrumental in the discovery of many ground-breaking biotechnologies including CRISPR. The primary function of phages is to infect bacteria. In that capacity, phages are considered an alternative approach to tackling current societal problems such as the rise of antibiotic-resistant microbes. TXTL provides alternative means to produce phages and with several advantages over in vivo synthesis methods. In this chapter, we describe the basic procedures to purify phage genomes, cell-free synthesize phages, and quantitate them using an all-E. coli TXTL system.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Escherichia coli/genética , DNA , Biotecnologia , Antibacterianos
14.
ACS Synth Biol ; 12(2): 405-418, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36700560

RESUMO

Cell-free systems derived from crude cell extracts have developed into tools for gene expression, with applications in prototyping, biosensing, and protein production. Key to the development of these systems is optimization of cell extract preparation methods. However, the applied nature of these optimizations often limits investigation into the complex nature of the extracts themselves, which contain thousands of proteins and reaction networks with hundreds of metabolites. Here, we sought to uncover the black box of proteins and metabolites in Escherichia coli cell-free reactions based on different extract preparation methods. We assess changes in transcription and translation activity from σ70 promoters in extracts prepared with acetate or glutamate buffer and the common post-lysis processing steps of a runoff incubation and dialysis. We then utilize proteomic and metabolomic analyses to uncover potential mechanisms behind these changes in gene expression, highlighting the impact of cold shock-like proteins and the role of buffer composition.


Assuntos
Biossíntese de Proteínas , Proteômica , Escherichia coli/genética , Escherichia coli/metabolismo , Sistema Livre de Células/metabolismo , Extratos Vegetais/metabolismo
15.
Sheng Wu Gong Cheng Xue Bao ; 39(1): 86-102, 2023 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-36738203

RESUMO

Cell-free transcription and translation (TXTL) system is a cell extract-based system for rapid in vitro protein expression. The system bypasses routine laboratory processes such as bacterial transformation, clonal screening and cell lysis, which allows more precise and convenient control of reaction substrates, reduces the impact of bacteria on protein production, and provides a high degree of versatility and flexibility. In recent years, TXTL has been widely used as an emerging platform in clusterd regularly interspaced short palindromic repeat (CRISPR) technologies, enabling more rapid and convenient characterization of CRISPR/Cas systems, including screening highly specific gRNAs as well as anti-CRISPR proteins. Furthermore, TXTL-based CRISPR biosensors combined with biological materials and gene circuits are able to detect pathogens through validation of related antibiotics and nucleic acid-based markers, respectively. The reagents can be freeze-dried to improve portability and achieve point-of-care testing with high sensitivity. In addition, combinations of the sensor with programmable circuit elements and other technologies provide a non-biological alternative to whole-cell biosensors, which can improve biosafety and accelerate its application for approval. Here, this review discusses the TXTL-based characterization of CRISPR and their applications in biosensors, to facilitate the development of TXTL-based CRISPR/Cas systems in biosensors.


Assuntos
Bactérias , Sistemas CRISPR-Cas
16.
ACS Synth Biol ; 12(8): 2418-2431, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37548960

RESUMO

Phage therapy to treat life-threatening drug-resistant infections has been hampered by technical challenges in phage production. Cell-free bacteriophage synthesis (CFBS) can overcome the limitations of standard phage production methods by manufacturing phage virions in vitro. CFBS mimics intracellular phage assembly using transcription/translation machinery (TXTL) harvested from bacterial lysates and combined with reagents to synthesize proteins encoded by a phage genomic DNA template. These systems may enable rapid phage production and engineering to accelerate phages from bench-to-bedside. TXTL harvested from wild type or commonly used bacterial strains was not optimized for bacteriophage production. Here, we demonstrate that TXTL from genetically modified E. coli BL21 can be used to enhance phage T7 yields in vitro by CFBS. Expression of 18 E. coli BL21 genes was manipulated by inducible CRISPR interference (CRISPRi) mediated by nuclease deficient Cas12a from F. novicida (dFnCas12a) to identify genes implicated in T7 propagation as positive or negative effectors. Genes shown to have a significant effect were overexpressed (positive effectors) or repressed (negative effectors) to modify the genetic background of TXTL harvested for CFBS. Phage T7 CFBS yields were improved by up to 10-fold in vitro through overexpression of translation initiation factor IF-3 (infC) and small RNAs OxyS and CyaR and by repression of RecC subunit exonuclease RecBCD. Continued improvement of CFBS will mitigate phage manufacturing bottlenecks and lower hurdles to widespread adoption of phage therapy.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bacteriófago T7/genética , Replicação do DNA
17.
J Biochem ; 173(5): 343-352, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36638780

RESUMO

T7 system is a commonly used in protein expression and the highest transcription activity of T7 RNAP usually caused the instability of T7 system. In order to apply T7 system extensively, it is essential to characterize T7 RNAP activity. In the present paper, an assay method for T7 RNAP activity was developed with a transcription-translation (TX-TL) system. After the optimization of TX-TL system, the operating parameters were determined as 34°C, 60 min with 20 ng/µl of plasmid DNA template. The standard curve of TX-TL assay method indicated an excellent correlation (r = 0.998), and the sensitivity was better than that of western blotting method. The precision investigation indicated a mean-relative error of 2.58% and a standard-relative error of 7.01%. Moreover, the cell lysate could be added directly to the optimized TX-TL system without affecting T7 RNAP activity assay. The feasibility of present method was further confirmed by characterizing T7 RNAP activity in cell lysate of five strains of Escherichia coli (E. coli) DH5α with different T7 RNAP activities and seven commercial strains of E. coli (DE3). The present assay method for T7 RNAP activity would have a great application in synthetic biology, metabolic engineering, enzyme engineering and biomedicine.


Assuntos
Escherichia coli , Transcrição Gênica , Escherichia coli/metabolismo , Regiões Promotoras Genéticas , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo
18.
ACS Synth Biol ; 11(2): 855-866, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35089706

RESUMO

Synthetic cells can mimic the intricate complexities of live cells, while mitigating the level of noise that is present natural systems; however, many crucial processes still need to be demonstrated in synthetic cells to use them to comprehensively study and engineer biology. Here we demonstrate key functionalities of synthetic cells previously available only to natural life: differentiation and mating. This work presents a toolset for engineering combinatorial genetic circuits in synthetic cells. We demonstrate how progenitor populations can differentiate into new lineages in response to small molecule stimuli or as a result of fusion, and we provide practical demonstration of utility for metabolic engineering. This work provides a tool for bioengineering and for natural pathway studies, as well as paving the way toward the construction of live artificial cells.


Assuntos
Células Artificiais , Células Artificiais/metabolismo , Bioengenharia , Comunicação Celular , Redes Reguladoras de Genes , Engenharia Metabólica , Biologia Sintética
19.
Methods Mol Biol ; 2404: 135-153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34694607

RESUMO

Cell-free transcription-translation (TXTL) systems produce RNAs and proteins from added DNA. By coupling their production to a biochemical assay, these biomolecules can be rapidly and scalably characterized without the need for purification or cell culturing. Here, we describe how TXTL can be applied to characterize Cas13 nucleases from Type VI CRISPR-Cas systems. These nucleases employ guide RNAs to recognize complementary RNA targets, leading to the nonspecific collateral cleavage of nearby RNAs. In turn, RNA targeting by Cas13 has been exploited for numerous applications, including in vitro diagnostics, programmable gene silencing in eukaryotes, and sequence-specific antimicrobials. As part of the described method, we detail how to set up TXTL assays to measure on-target and collateral RNA cleavage by Cas13 as well as how to assay for putative anti-CRISPR proteins. Overall, the method should be useful for the characterization of Type VI CRISPR-Cas systems and their use in ranging applications.


Assuntos
Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Sistema Livre de Células/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , RNA
20.
Synth Biol (Oxf) ; 7(1): ysac015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046152

RESUMO

DNA templates for protein production remain an unexplored source of variability in the performance of cell-free expression (CFE) systems. To characterize this variability, we investigated the effects of two common DNA extraction methodologies, a postprocessing step and manual versus automated preparation on protein production using CFE. We assess the concentration of the DNA template, the quality of the DNA template in terms of physical damage and the quality of the DNA solution in terms of purity resulting from eight DNA preparation workflows. We measure the variance in protein titer and rate of protein production in CFE reactions associated with the biological replicate of the DNA template, the technical replicate DNA solution prepared with the same workflow and the measurement replicate of nominally identical CFE reactions. We offer practical guidance for preparing and characterizing DNA templates to achieve acceptable variability in CFE performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA