Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Chem Eng J ; 405: 126893, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901196

RESUMO

The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (ßCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.

2.
Nutr Res Rev ; 32(1): 70-78, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30284526

RESUMO

It has been nearly 70 years since the discovery that strict adherence to a diet low in phenylalanine prevents severe neurological sequelae in patients with phenylalanine hydroxylase deficiency (phenylketonuria; PKU). Today, dietary treatment with restricted phenylalanine intake supplemented with non-phenylalanine amino acids to support growth and maintain a healthy body composition remains the mainstay of therapy. However, a better understanding is needed of the factors that influence N balance in the context of amino acid supplementation. The aim of the present paper is to summarise considerations for improving N balance in patients with PKU, with a focus on gaining greater understanding of amino acid absorption, disposition and utilisation. In addition, the impact of phenylalanine-free amino acids on 24 h blood phenylalanine/tyrosine circadian rhythm is evaluated. We compare the effects of administering intact protein v. free amino acid on protein metabolism and discuss the possibility of improving outcomes by administering amino acid mixtures so that their absorption profile mimics that of intact protein. Protein substitutes with the ability to delay absorption of phenylalanine and tyrosine, mimicking physiological absorption kinetics, are expected to improve the rate of assimilation into protein and minimise fluctuations in quantitative plasma amino acid levels. They may also help maintain normal glycaemia and satiety sensation. This is likely to play an important role in improving the management of patients with PKU.


Assuntos
Aminoácidos/metabolismo , Suplementos Nutricionais , Nitrogênio/metabolismo , Fenilalanina/metabolismo , Fenilcetonúrias/metabolismo , Aminoácidos/farmacologia , Ritmo Circadiano , Dieta , Proteínas Alimentares/metabolismo , Proteínas Alimentares/farmacologia , Proteínas Alimentares/uso terapêutico , Humanos , Absorção Intestinal/efeitos dos fármacos , Fenilcetonúrias/dietoterapia , Tirosina/metabolismo
3.
Br J Nutr ; 120(12): 1321-1331, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30375295

RESUMO

Ca2+-sensing receptor (CaSR) represents a potential therapeutic target for inflammatory bowel diseases and strongly prefers aromatic amino acid ligands. We investigated the regulatory effects of dietary supplementation with aromatic amino acids - tryptophan, phenylalanine and tyrosine (TPT) - on the CaSR signalling pathway and intestinal inflammatory response. The in vivo study was conducted with weanling piglets using a 2 × 2 factorial arrangement in a randomised complete block design. Piglets were fed a basal diet or a basal diet supplemented with TPT and with or without inflammatory challenge. The in vitro study was performed in porcine intestinal epithelial cell line to investigate the effects of TPT on inflammatory response using NPS-2143 to inhibit CaSR. Dietary supplementation of TPT alleviated histopathological injury and decreased myeloperoxidase activity in intestine challenged with lipopolysaccharide. Dietary supplementation of TPT decreased serum concentration of pro-inflammatory cytokines (IL-1ß, IL-6, IL-8, IL-12, granulocyte-macrophage colony-stimulating factor, TNF-α), as well as the mRNA abundances of pro-inflammatory cytokines in intestine but enhanced anti-inflammatory cytokines IL-4 and transforming growth factor-ß mRNA levels compared with pigs fed control diet and infected by lipopolysaccharide. Supplementation of TPT increased CaSR and phospholipase Cß2 protein levels, but decreased inhibitor of NF-κB kinase α/ß and inhibitor of NF-κB (IκB) protein levels in the lipopolysaccharide-challenged piglets. When the CaSR signalling pathway was blocked by NPS-2143, supplementation of TPT decreased the CaSR protein level, but enhanced phosphorylated NF-κB and IκB levels in IPEC-J2 cells. To conclude, supplementation of aromatic amino acids alleviated intestinal inflammation as mediated through the CaSR signalling pathway.


Assuntos
Aminoácidos Aromáticos/administração & dosagem , Inflamação/metabolismo , Intestinos/patologia , Receptores de Detecção de Cálcio/metabolismo , Animais , Colo/metabolismo , Citocinas/sangue , Dieta , Suplementos Nutricionais , Células Epiteliais/metabolismo , Feminino , Quinase I-kappa B/metabolismo , Jejuno/metabolismo , Lipopolissacarídeos , NF-kappa B/metabolismo , Peroxidase/metabolismo , Fenilalanina/administração & dosagem , Fosforilação , RNA Mensageiro/metabolismo , Distribuição Aleatória , Transdução de Sinais , Sus scrofa , Suínos , Triptofano/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo , Tirosina/administração & dosagem
4.
Br J Nutr ; 117(6): 775-783, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28393748

RESUMO

Recently, it has been found that the gut microbiota influences functions of the host brain by affecting monoamine metabolism. The present study focused on the relationship between the gut microbiota and the brain amino acids. Specific pathogen-free (SPF) and germ-free (GF) mice were used as experimental models. Plasma and brain regions were sampled from mice at 7 and 16 weeks of age, and analysed for free d- and l-amino acids, which are believed to affect many physiological functions. At 7 weeks of age, plasma concentrations of d-aspartic acid (d-Asp), l-alanine (l-Ala), l-glutamine (l-Gln) and taurine were higher in SPF mice than in GF mice, but no differences were found at 16 weeks of age. Similar patterns were observed for the concentrations of l-Asp in striatum, cerebral cortex and hippocampus, and l-arginine (l-Arg), l-Ala and l-valine (l-Val) in striatum. In addition, the concentrations of l-Asp, d-Ala, l-histidine, l-isoleucine (l-Ile), l-leucine (l-Leu), l-phenylalanine and l-Val were significantly higher in plasma of SPF mice when compared with those of GF mice. The concentrations of l-Arg, l-Gln, l-Ile and l-Leu were significantly higher in SPF than in GF mice, but those of d-Asp, d-serine and l-serine were higher in some brain regions of GF mice than in those of SPF mice. In conclusion, the concentration of amino acids in the host brain seems to be dependent on presence of the gut microbiota. Amino acid metabolism in the host brain may be modified by manipulating microbiota communities.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Encéfalo/metabolismo , Microbioma Gastrointestinal , Aminoácidos/sangue , Animais , Camundongos Endogâmicos BALB C , Neurotransmissores/metabolismo
5.
Comput Struct Biotechnol J ; 21: 1606-1620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874158

RESUMO

Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic signatures at physiological concentrations in human colorectal adenocarcinoma cells. We observed significantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial transport and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer.

6.
Mol Genet Metab Rep ; 31: 100866, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782613

RESUMO

Classical phenylketonuria (PKU) presents a unique challenge for women of child-bearing age. In the context of pregnancy, poorly controlled hyperphenylalaninemia can result in a devastating constellation of outcomes for the baby referred to as the maternal PKU Syndrome. We present the case of a woman with classical PKU unable to maintain a restricted diet and refractory to pharmacological therapies. She elected to undergo a domino liver transplant, receiving an organ from a donor with classical branched chain ketoacid dehydrogenase deficiency (maple syrup urine disease). Plasma phenylalanine concentrations normalized within a few days after transplant and remained so on an unrestricted diet during the first year of follow-up. The patient reports subjective improvements in mood, energy level, and overall quality of life. In the appropriate clinical setting, liver transplant should be considered to provide metabolic stability for PKU patients, particularly women of childbearing age.

7.
Food Chem X ; 15: 100389, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211750

RESUMO

In this work, the binding mechanism of myofibrillar protein (MP) with malondialdehyde and 4-hydroxy-2-nonenal under low temperature vacuum heating was investigated via multispectroscopic and molecular docking. The results showed that binding interaction and increasing temperature caused significant changes in the conformations as well as a decrease in the value of protein intrinsic fluorescence, surface hydrophobicity, and fluorescence excitation-emission matrix spectra. Furthermore, the decrease in α-helix and ß-turn, increase in ß-sheet and a random coil of MP, imply the MP molecules to be more unfolded. Isothermal titration calorimetry and molecular docking results showed that main driving force for binding with MP was hydrogen bond, and the binding ability of malondialdehyde was superior to that of 4-hydroxy-2-nonenal. Moreover, increasing the heating temperature was beneficial to the binding reaction and intensified the conformational transition of MP. These results will provide a reference for further studies on the lipid and protein interaction of sturgeon.

8.
Data Brief ; 41: 107926, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35198697

RESUMO

Blood phenylalanine-to-tyrosine (Phe/Tyr) ratio is an important indicator of metabolic control in phenylketonuria patients. We present the data that highlights the role of Phe/Tyr-ratio in the evaluation of tetrahydrobiopterin (BH4)-responsiveness in patients with hyperphenylalaninemia. Our data complements the results from the original research article by Tansek et al., 2012 [1]. We performed a BH4-loading test in 32 patients after four days of increased protein intake (2000 mg/kg body weight). Blood sampling was performed 96, 72, 48, 24, 16 h, and moments before oral administration of BH4 in a dose of 20 mg/kg body weight. Additional blood samples were collected 8 and 24 h after its administration. Phenylalanine (Phe) and Tyrosine (Tyr) levels were determined from dried blood spots by tandem mass spectrometry. Phe/Tyr-ratio reached a plateau after three days of increased dietary protein intake. Fifteen patients (47%) responded to BH4, defined as a decrease of Phe-of at least 30% after 24 h of BH4 administration. Phe/Tyr-ratios were significantly higher in non-responders compared to responders. In the responder group, Phe/Tyr-ratios decreased in average of 67% (p = 0.001) and 45% (p = 0.001) after 8 and 24 h of BH4 administration, respectively. Phe/Tyr-ratio decreased after 8 h of drug administration also in the non-responder group, but not 24 h after administration.

9.
Data Brief ; 45: 108716, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426033

RESUMO

Endogenous hemorphins are being intensively investigated as therapeutic agents in neuropharmacology, and also as biomarkers in mood regulation, inflammation and oncology. The datasets collected herein report physicochemical parameters of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes in the presence of VV-hemorphin-5 (Val-Val-Tyr-Pro-Trp-Thr-Gln) and analogues, modified at position 1 and 7 by the natural amino acid isoleucine or the non-proteinogenic 2-aminoisobutyric, 2,3-diaminopropanoic or 2,4-diaminobutanoic amino acids. These peptides have been previously screened for nociceptive activity and were chosen accordingly. The present article contains fluorescence spectroscopy data of Laurdan- and di-8-ANEPPS- labelled large unilamellar vesicles (LUV) providing the degree of hydration and dipole potential of lipid bilayers in the presence of VV-hemorphin-5 analogues. Lipid packing is accessible from Laurdan intensity profiles and generalized polarization datasets reported herein. The data presented on fluorescence intensity ratios of di-8-ANEPPS dye provide dipole potential values of phosphatidylcholine-valorphin membranes. Vesicle size and electrophoretic mobility datasets included refer to the effect of valorphins on the size distribution and ζ -potential of POPC LUVs. Investigation of physicochemical properties of peptides such as diffusion coefficients and heterogeneous rate constant relates to elucidation of transport mechanisms in living cells. Voltammetric data of valorphins are presented together with square-wave voltammograms of investigated peptides for calculation of their heterogeneous electron transfer rate constants. Datasets from the thermal shape fluctuation analysis of quasispherical 'giant' unilamellar vesicles (GUV) are provided to quantify the influence of hemorphin incorporation on the membrane bending elasticity. Isothermal titration calorimetric data on the thermodynamics of peptide-lipid interactions and the binding affinity of valorphin analogues to phosphatidylcholine membranes are reported. Data of frequency-dependent deformation of GUVs in alternating electric field are included together with the values of the specific electrical capacitance of POPC-valorphin membranes. The datasets reported in this article can underlie the formulation and implementation of peptide-based strategies in pharmacology and biomedicine.

10.
Curr Res Toxicol ; 2: 411-423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917955

RESUMO

Rotenone is a broad-spectrum pesticide employed in various agricultural practices all over the world. Human beings are exposed to this chemical through oral, nasal, and dermal routes. Inhalation of rotenone exposes bio-molecular components of lungs to this chemical. Biophysical activity of lungs is precisely regulated by pulmonary surfactant to facilitate gaseous exchange. Surfactant proteins (SPs) are the fundamental components of pulmonary surfactant. SPs like SP-A and SP-D have antimicrobial activities providing a crucial first line of defense against infections in lungs whereas SP-B and SP-C are mainly involved in respiratory cycle and reduction of surface tension at air-water interface. In this study, molecular docking analysis using AutoDock Vina has been conducted to investigate binding potential of rotenone with the four SPs. Results indicate that, rotenone can bind with carbohydrate recognition domain (CRD) of SP-A, N-, and C- terminal peptide of SP-B, SP-C, and CRD of SP-D at multiples sites via several interaction mediators such as H bonds, C-H bonds, alkyl bonds, pi-pi stacked, Van der Waals interaction, and other. Such interactions of rotenone with SPs can disrupt biophysical and anti-microbial functions of SPs in lungs that may invite respiratory ailments and pathogenic infections.

11.
Comput Struct Biotechnol J ; 19: 1713-1737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897977

RESUMO

Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin-related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.

12.
Phytomed Plus ; 1(4): 100083, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35403086

RESUMO

Background: Lack of treatment of novel Coronavirus disease led to the search of specific antivirals that are capable to inhibit the replication of the virus. The plant kingdom has demonstrated to be an important source of new molecules with antiviral potential. Purpose: The present study aims to utilize various computational tools to identify the most eligible drug candidate that have capabilities to halt the replication of SARS-COV-2 virus by inhibiting Main protease (Mpro) enzyme. Methods: We have selected plants whose extracts have inhibitory potential against previously discovered coronaviruses. Their phytoconstituents were surveyed and a library of 100 molecules was prepared. Then, computational tools such as molecular docking, ADMET and molecular dynamic simulations were utilized to screen the compounds and evaluate them against Mpro enzyme. Results: All the phytoconstituents showed good binding affinities towards Mpro enzyme. Among them laurolitsine possesses the highest binding affinity i.e. -294.1533 kcal/mol. On ADMET analysis of best three ligands were simulated for 1.2 ns, then the stable ligand among them was further simulated for 20 ns. Results revealed that no conformational changes were observed in the laurolitsine w.r.t. protein residues and low RMSD value suggested that the Laurolitsine-protein complex was stable for 20 ns. Conclusion: Laurolitsine, an active constituent of roots of Lindera aggregata, was found to be having good ADMET profile and have capabilities to halt the activity of the enzyme. Therefore, this makes laurolitsine a good drug candidate for the treatment of COVID-19.

13.
Mol Genet Metab Rep ; 23: 100589, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32346514

RESUMO

BACKGROUND: The implementation of neonatal screening and the early initiation of lifelong therapy have helped to prevent severe complications and enabled much more favorable outcomes for early-treated phenylketonuria (ETPKU) patients. However, PKU patients tend to develop subtle cognitive and psychosocial abnormalities and the strict dietary therapy can present financial and social burden. Thus, PKU is expected to affect the quality of life (QoL) of these patients. There is insufficient evidence regarding the relationship between metabolic control and Health-Related QoL (HRQoL). We aimed to assess the effect of short- and long-term therapy on QoL among Hungarian adult PKU patients using the standardized PKU-specific PKU-QoL questionnaire. Methods: We conducted a single-centre, cross-sectional, observational study in Hungary. We included adult PKU patients treated with diet and amino acid supplements only. Patients reported HRQoL using the standardized adult PKU-QoL questionnaire and mean blood Phe concentrations were assessed for three different time periods: the previous 10 years, the previous year and concentration at the time of completing the questionnaire. The correlation between patients' QoL scores and their Phe levels was assessed. The classical PKU group was further divided into "good" and "suboptimal" adherence groups based on individual mean Phe levels in the examined time period. We evaluated differences in QoL among the two subgroups of classical PKU patients. QoL scores between classical and non-classical patients were also compared. Results: Data from 88 adult patients were analysed (66 had classical PKU). No median PKU-QoL score reached major or severe impact/frequent symptoms in any domain. The highest scores (meaning larger burden) were mostly related to emotional impact of PKU and disease management. When performing correlation analysis between Phe levels and QoL scores by all patients we found weak to fair positive correlation in several domains either short or long term. Patients with classical PKU reported greater financial impact of PKU than patients with less severe PKU. Classical PKU patients with good therapy adherence tended to report better HRQoL scores than patients with suboptimal adherence. Conclusion: We conclude that patients showed good HRQoL using the PKU-specific questionnaire. Our study demonstrates that suboptimal metabolic control is negatively associated with patients' HRQoL.

14.
Clin Mass Spectrom ; 12: 1-6, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34841073

RESUMO

Tyrosinemia type 1 is an autosomal recessive aminoacidopathy caused by fumarylacetoacetate hydrolase (FAH) deficiency. Consequently, tyrosine and its metabolites accumulate, resulting in liver and kidney toxicity. Symptoms of the disease usually manifest after three weeks of life and include vomiting, failure to thrive, hepatomegaly, jaundice, bleeding diathesis, rickets and renal tubular dysfunction. Untreated, the disease eventually progresses to liver or kidney failure and generally results in a fatal outcome. Expedient diagnosis is critical because an early start of treatment can increase the likelihood of a positive outcome. Here, we report on a male newborn with a family history positive for tyrosinemia type 1 who was subjected to a metabolic work-up immediately after birth. Amino acids were quantified by tandem mass spectrometry coupled with ultra performance liquid chromatography. Urinary organic acids were analyzed on capillary gas chromatography coupled with mass spectrometry. DNA analysis of the FAH gene was performed by Sanger sequencing. On the first day of life, the patient's plasma amino acids showed an increased tyrosine concentration, while urine organic acids detected succinylacetone, a tyrosine metabolite specific for tyrosinemia type 1. The patient's DNA analysis revealed homozygosity of the c.554-1G > T mutation in the FAH gene, which was consistent with the diagnosis. Nitisinone treatment, combined with a dietary restriction of tyrosine and phenylalanine, was introduced immediately. Regular visits and measurement of amino acid concentrations, which enables therapy adjustment and treatment efficiency monitoring in patients with tyrosinemia type 1, has continued over the past 4+ years, and is expected to continue.

15.
Mol Genet Metab Rep ; 15: 30-35, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30023287

RESUMO

BACKGROUND: Low bone mineral density (BMD) and subsequent skeletal fragility have emerged as a long-term complication of phenylketonuria (PKU). OBJECTIVE: To determine if there are differences in BMD and body composition between male and female participants with PKU. METHODS: From our randomized, crossover trial [1] of participants with early-treated PKU who consumed a low-phenylalanine (Phe) diet combined with amino acid medical foods (AA-MF) or glycomacropeptide medical foods (GMP-MF), a subset of 15 participants (6 males, 9 females, aged 15-50 y, 8 classical and 7 variant PKU) completed one dual energy X-ray absorptiometry (DXA) scan and 3-day food records after each dietary treatment. Participants reported lifelong compliance with AA-MF. In a crossover design, 8 participants (4 males, 4 females, aged 16-35 y) provided a 24-h urine collection after consuming AA-MF or GMP-MF for 1-3 weeks each. RESULTS: Male participants had significantly lower mean total body BMD Z-scores (means ± SE, males = - 0.9 ± 0.4; females, 0.2 ± 0.3; p = 0.01) and tended to have lower mean L1-4 spine and total femur BMD Z-scores compared to female participants. Only 50% percent of male participants had total body BMD Z-scores above - 1.0 compared to 100% of females (p = 0.06). Total femur Z-scores were negatively correlated with intake of AA-MF (r = - 0.58; p = 0.048). Males tended to consume more grams of protein equivalents per day from AA-MF (means ± SE, males: 67 ± 6 g, females: 52 ± 4 g; p = 0.057). Males and females demonstrated similar urinary excretion of renal net acid, magnesium and sulfate; males showed a trend for higher urinary calcium excretion compared to females (means ± SE, males: 339 ± 75 mg/d, females: 228 ± 69 mg/d; p = 0.13). Females had a greater percentage of total fat mass compared to males (means ± SE, males: 24.5 ± 4.8%, females: 36.5 ± 2.5%; p = 0.047). Mean appendicular lean mass index was similar between males and females. Male participants had low-normal lean mass based on the appendicular lean mass index. CONCLUSIONS: Males with PKU have lower BMD compared with females with PKU that may be related to higher intake of AA-MF and greater calcium excretion. The trial was registered at www.clinicaltrials.gov as NCT01428258.

16.
J Biomol Struct Dyn ; 36(11): 2807-2821, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28812944

RESUMO

Ligand binding studies on carrier proteins are crucial in determining the pharmacological properties of drug candidates. Here, a new palladium(II) complex was synthesized and characterized. The in vitro binding studies of this complex with two carrier proteins, human serum albumin (HSA), and ß-lactoglobulin (ßLG) were investigated by employing biophysical techniques as well as computational modeling. The experimental results showed that the Pd(II) complex interacted with two carrier proteins with moderate binding affinity (Kb ≈ .5 × 104 M-1 for HSA and .2 × 103 M-1 for ßLG). Binding of Pd(II) complex to HSA and ßLG caused strong fluorescence quenching of both proteins through static quenching mechanism. In two studied systems hydrogen bonds and van der Waals forces were the major stabilizing forces in the drug-protein complex formation. UV-Visible and FT-IR measurements indicated that the binding of above complex to HSA and ßLG may induce conformational and micro-environmental changes of two proteins. Protein-ligand docking analysis confirmed that the Pd(II) complex binds to residues located in the subdomain IIA of HSA and site A of ßLG. All these experimental and computational results suggest that ßLG and HSA might act as carrier protein for Pd(II) complex to deliver it to the target molecules.


Assuntos
Proteínas de Transporte/química , Paládio/química , Bases de Schiff/química , Sítios de Ligação , Complexos de Coordenação/química , Humanos , Lactoglobulinas/química , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Albumina Sérica Humana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Termodinâmica
17.
J Biomol Struct Dyn ; 36(11): 2787-2806, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28849726

RESUMO

In this work, a pair of new palladium(II) complexes, [Pd(Gly)(Phe)] and [Pd(Gly)(Tyr)], (where Gly is glycine, Phe is phenylalanine, and Tyr is tyrosine) were synthesized and characterized by UV-Vis, FT-IR, elemental analysis, 1H-NMR, and conductivity measurements. The detailed 1H NMR and infrared spectral studies of these Pd(II) complexes ascertain the mode of binding of amino acids to palladium through nitrogen of -NH2 and oxygen of -COO- groups as bidentate chelates. The Pd(II) complexes have been tested for in vitro cytotoxicity activities against cancer cell line of K562. Interactions of these Pd(II) complexes with CT-DNA and human serum albumin were identified through absorption/emission titrations and gel electrophoresis which indicated significant binding proficiency. The binding distance (r) between these synthesized complexes and HSA based on Forster's theory of non-radiation energy transfer were calculated. Alterations of HSA secondary structure induced by complexes were confirmed by FT-IR measurements. The results of emission quenching at three temperatures have revealed that the quenching mechanism of these Pd(II) complexes with CT-DNA and HSA were the static and dynamic quenching mechanism, respectively. Binding constants (Kb), binding site number (n), and the corresponding thermodynamic parameters were calculated and revealed that the hydrogen binding and hydrophobic forces played a major role when Pd(II) complexes interacted with DNA and HSA, respectively. We bid that [Pd(Gly)(Phe)] and [Pd(Gly)(Tyr)] complexes exhibit the groove binding with CT-DNA and interact with the main binding pocket of HSA. The complexes follow the binding affinity order of [Pd(Gly)(Tyr)] > [Pd(Gly)(Phe)] with CT-DNA- and HSA-binding.


Assuntos
Complexos de Coordenação/química , Ligantes , Compostos Organometálicos/química , Paládio/química , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , DNA/química , Humanos , Células K562 , Cinética , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Ligação Proteica , Conformação Proteica , Albumina Sérica Humana/química , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica
18.
Acta Pharm Sin B ; 8(6): 862-880, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30505656

RESUMO

Mitochondrial targeting is a promising approach for solving current issues in clinical application of chemotherapy and diagnosis of several disorders. Here, we discuss direct conjugation of mitochondrial-targeting moieties to anticancer drugs, antioxidants and sensor molecules. Among them, the most widely applied mitochondrial targeting moiety is triphenylphosphonium (TPP), which is a delocalized cationic lipid that readily accumulates and penetrates through the mitochondrial membrane due to the highly negative mitochondrial membrane potential. Other moieties, including short peptides, dequalinium, guanidine, rhodamine, and F16, are also known to be promising mitochondrial targeting agents. Direct conjugation of mitochondrial targeting moieties to anticancer drugs, antioxidants and sensors results in increased cytotoxicity, anti-oxidizing activity and sensing activity, respectively, compared with their non-targeting counterparts, especially in drug-resistant cells. Although many mitochondria-targeted anticancer drug conjugates have been investigated in vitro and in vivo, further clinical studies are still needed. On the other hand, several mitochondria-targeting antioxidants have been analyzed in clinical phases I, II and III trials, and one conjugate has been approved for treating eye disease in Russia. There are numerous ongoing studies of mitochondria-targeted sensors.

19.
J Taibah Univ Med Sci ; 12(5): 397-406, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31435270

RESUMO

OBJECTIVES: Cumulus cells play a crucial role as essential mediators in the maturation of ova. Ginger contains 10-gingerol, which induces apoptosis in colon cancer cells. Based on this hypothesis, this study aimed to determine whether 10-gingerol is able to induce apoptosis in normal cells, namely, cumulus cells. METHODS: This study used an in vitro analysis by culturing Cumulus cells in M199 containing 10-gingerol in various concentrations (12, 16, and 20 µM) and later detected early apoptotic activity using an Annexin V-FITC detection kit. RESULT: The in vitro data revealed that the number of apoptosis cells increased along with the period of incubation as follows: 12 µM (63.71% ± 2.192%); 16 µM (74.51% ± 4.596%); and 20 µM (78.795% ± 1.435%). The substance 10-gingerol induces apoptosis in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT-1. CONCLUSIONS: These findings indicate that further examination is warranted for 10-gingerol as a contraception agent.

20.
Mol Genet Metab Rep ; 6: 21-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27014575

RESUMO

INTRODUCTION: Metabolic control of phenylketonuria (PKU) and compliance with the low-phenylalanine (phe) diet are frequently assessed by measuring blood phe concentrations in dried blood spots (DBS) collected by patients instead of plasma phe concentrations. OBJECTIVE: Our objective was to investigate the difference in blood phe concentrations in DBS collected by subjects and analyzed using either a validated newborn screening tandem mass spectrometry (MS/MS) protocol or ion-exchange chromatography (IEC) compared to plasma phe concentrations obtained simultaneously and analyzed using IEC. DESIGN: Three to four fasting blood samples were obtained from 29 subjects with PKU, ages 15-49 years. Capillary blood was spotted on filter paper by each subject and the DBS analyzed using both MS/MS and IEC. Plasma was isolated from venous blood and analyzed using IEC. RESULTS: Blood phe concentrations in DBS analyzed using MS/MS are 28% ± 1% (n = 110, p < 0.0001) lower than plasma phe concentrations analyzed using IEC resulting in a blood phe concentration of 514 ± 23 µmol/L and a plasma phe concentration of 731 ± 32 µmol/L (mean ± SEM). This discrepancy is larger when plasma phe is > 600 µmol/L. Due to the large variability across subjects of 13.2%, a calibration factor to adjust blood phe concentrations is not recommended. Analysis of DBS using IEC reduced the discrepancy to 15 ± 2% lower phe concentrations compared to plasma analyzed using IEC (n = 38, p = 0.0001). This suggests that a major contributor to the discrepancy in phe concentrations is the analytical method. CONCLUSION: Use of DBS analyzed using MS/MS to monitor blood phe concentrations in individuals with PKU yields significantly lower phe levels compared to plasma phe levels analyzed using IEC. Optimization of current testing methodologies for measuring phe in DBS, along with patient education regarding the appropriate technique for spotting blood on filter paper is needed to improve the accuracy of using DBS to measure phe concentrations in PKU management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA