Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochem Biophys Res Commun ; 736: 150514, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128267

RESUMO

We conducted a thorough genome-wide investigation of protein phosphorylation in the halotolerant bacterium Mangrovibacter phragmitis (MPH) ASIOC01, using the Fe-IMAC enrichment method combined with tandem mass spectrometry under low- and high-salinity conditions. The phosphoproteome comprises 86 unique phosphorylated proteins, crucially involving pathways such as glycolysis/gluconeogenesis, the citrate cycle, chaperones, ribosomal proteins, and cell division. This study represents the first and most extensive investigation to-date comparing the bacterial phosphoproteome under different osmotic conditions using a gel-free approach. We identified 45 unique phosphoproteins in MPH cultured in media containing 1 % NaCl, and 33 exclusive phosphoproteins in MPH cultured in media containing 5 % NaCl. Eight phosphoproteins were detected in both growth conditions. Analysis of high-confidence phosphosites reveals that phosphorylation predominantly occurs on serine residues (52.3 %), followed by threonine (35.1 %) and tyrosine (12.6 %) residues. Interestingly, 34 % of the phosphopeptides display multiple phosphosites. Currently, prokaryotic phosphorylation site prediction platforms like MPSite and NetPhosBac 1.0 demonstrate an average prediction accuracy of only 21 % when applied to our dataset. Fourteen phosphoproteins did not yield matches when compared against dbPSP 2.0 (database of Phosphorylation Sites in Prokaryotes), indicating that these proteins may be novel phosphoproteins. These unique proteins undergoing phosphorylation under high salinity growth conditions potentially enhance their adaptive capabilities to environmental challenges.

2.
Sensors (Basel) ; 20(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947584

RESUMO

Reactive oxygen species (ROS) are central effectors of inflammation and play a key role in cell signaling. Previous reports have described an association between oxidative events and the modulation of innate immunity. However, the role of redox signaling in adaptive immunity is still not well understood. This work is based on a novel investigation of diamide, a specific oxidant of sulfhydryl groups, and it is the first performed in purified T cell tyrosine phosphorylation signaling. Our data show that ex vivo T cells respond to -SH group oxidation with a distinctive tyrosine phosphorylation response and that these events elicit specific cellular responses. The expression of two essential T-cell receptors, CD25 and CD62L, and T-cell cytokine release is also affected in a specific way. Experiments with Syk inhibitors indicate a major contribution of this kinase in these phenomena. This pilot work confirms the presence of crosstalk between oxidation of cysteine residues and tyrosine phosphorylation changes, resulting in a series of functional events in freshly isolated T cells. Our experiments show a novel role of Syk inhibitors in applying their anti-inflammatory action through the inhibition of a ROS-generated reaction.


Assuntos
Selectina L/metabolismo , Receptores de Interleucina-2/metabolismo , Transdução de Sinais/fisiologia , Quinase Syk/metabolismo , Linfócitos T , Sobrevivência Celular , Células Cultivadas , Diamida , Humanos , Oxirredução , Fosforilação , Linfócitos T/metabolismo , Linfócitos T/fisiologia
3.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517126

RESUMO

Bicarbonate uptake is one of the early steps of capacitation, but the identification of proteins regulating anion fluxes remains elusive. The aim of this study is to investigate the role of sperm solute carrier 4 (SLC4) A1 (spAE1) in the capacitation process. The expression, location, and tyrosine-phosphorylation (Tyr-P) level of spAE1 were assessed. Thereby, it was found that 4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), an SLC4 family channel blocker, inhibited capacitation in a dose-dependent manner by decreasing acrosome reaction (ARC% 24.5 ± 3.3 vs 64.9 ± 4.3, p < 0.05) and increasing the percentage of not viable cells (NVC%), comparable to the inhibition by I-172, a cystic fibrosis transmembrane conductance regulator (CFTR) blocker (AR% 30.5 ± 4.4 and NVC% 18.6 ± 2.2). When used in combination, a synergistic inhibitory effect was observed with a remarkable increase of the percentage of NVC (45.3 ± 4.1, p < 0.001). spAE1 was identified in sperm membrane as a substrate for Tyr-protein kinases Lyn and Syk, which were identified as both soluble and membrane-bound pools. spAE1-Tyr-P level increased in the apical region of sperm under capacitating conditions and was negatively affected by I-172 or DIDS, and, to a far greater extent, by a combination of both. In conclusion, we demonstrated that spAE1 is expressed in sperm membranes and it is phosphorylated by Syk, but above all by Lyn on Tyr359, which are involved in sperm viability and capacitation.


Assuntos
Proteínas SLC4A/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/fisiologia , Tirosina/metabolismo , Reação Acrossômica , Membrana Celular , Sobrevivência Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Masculino , Fosforilação , Proteínas SLC4A/genética
4.
Int J Mol Sci ; 20(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766156

RESUMO

Reversible protein phosphorylation at serine, threonine and tyrosine is a well-known dynamic post-translational modification with stunning regulatory and signalling functions in eukaryotes. Shotgun phosphoproteomic analyses revealed that this post-translational modification is dramatically lower in bacteria than in eukaryotes. However, Ser/Thr/Tyr phosphorylation is present in all analysed bacteria (24 eubacteria and 1 archaea). It affects central processes, such as primary and secondary metabolism development, sporulation, pathogenicity, virulence or antibiotic resistance. Twenty-nine phosphoprotein orthologues were systematically identified in bacteria: ribosomal proteins, enzymes from glycolysis and gluconeogenesis, elongation factors, cell division proteins, RNA polymerases, ATP synthases and enzymes from the citrate cycle. While Ser/Thr/Tyr phosphorylation exists in bacteria, there is a consensus that histidine phosphorylation is the most abundant protein phosphorylation in prokaryotes. Unfortunately, histidine shotgun phosphorproteomics is not possible due to the reduced phosphohistidine half-life under the acidic pH conditions used in standard LC-MS/MS analysis. However, considering the fast and continuous advances in LC-MS/MS-based phosphoproteomic methodologies, it is expected that further innovations will allow for the study of His phosphoproteomes and a better coverage of bacterial phosphoproteomes. The characterisation of the biological role of bacterial Ser/Thr/Tyr and His phosphorylations might revolutionise our understanding of prokaryotic physiology.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Aminoácidos/análise , Aminoácidos/metabolismo , Bactérias/química , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/química , Cromatografia Líquida/métodos , Humanos , Fosfoproteínas/química , Fosforilação , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
5.
Contemp Oncol (Pozn) ; 23(1): 16-22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061632

RESUMO

We highlight previous incompletely understood cell biology data in the STAT3 signaling field with respect to interleukin-6 (IL-6)-induced activation of this transcription factor in hepatoma cells to generate cytoplasmic and nuclear STAT3 bodies. We provide a novel re-interpretation of the previous observations. We show that IL-6-induced GFP-STAT3/PY-STAT3 cytoplas-mic and nuclear bodies represent phase-separated biomolecular condensates. These structures represent examples of a cytokine-induced phase transition which occurs within 10-15 min of exposure to the cytokine, and which was Tyr phosphorylation dependent. Evidence that these IL-6-induced cytoplasmic and nuclear GFP-STAT3 bodies in live cells represented phase-separated condensates came from the observation that 1,6-hexanediol caused their disassembly within 30-60 seconds. Moreover, these STAT3 condensates also showed rapid tonicity-driven phase transitions - disassembly under hypotonic conditions and reassembly when cells were returned to isotonic medium. That STAT3 condensates were rapidly disassembled in hypotonic buffer commonly used for cell fractionation points to a limitation of studies of STAT3 biochemistry using hypotonic swelling and mechanical breakage. Overall, the new data help reinterpret IL-6-induced cytoplasmic and nuclear STAT3 bodies as phase-separated biomolecular condensates, and bring the concept of membrane-less organelles to the cytokine-induced STAT transcription factor field and cancer cell biology.

6.
J Headache Pain ; 19(1): 102, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400767

RESUMO

BACKGROUND: Although the mechanism of chronic migraine (CM) is unclear, it might be related to central sensitization and neuronal persistent hyperexcitability. The tyrosine phosphorylation of NR2B (NR2B-pTyr) reportedly contributes to the development of central sensitization and persistent pain in the spinal cord. Central sensitization is thought to be associated with an increase in synaptic efficiency, but the mechanism through which NR2B-pTyr regulates synaptic participation in CM-related central sensitization is unknown. In this study, we aim to investigate the role of NR2B-pTyr in regulating synaptic plasticity in CM-related central sensitization. METHODS: Male Sprague-Dawley rats were subjected to seven inflammatory soup (IS) injections to model recurrent trigeminovascular or dural nociceptor activation, which is assumed to occur in patients with CM. We used the von Frey test to detect changes in mechanical withdrawal thresholds, and western blotting and immunofluorescence staining assays were performed to detect the expression of NR2B-pTyr in the trigeminal nucleus caudalis (TNC). NR2B-pTyr was blocked with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)-pyrazolo [3,4-d] pyrimidine (PP2) and the protein tyrosine kinase inhibitor genistein to detected the changes in calcitonin gene-related peptide (CGRP), substance P (SP), and the synaptic proteins postsynaptic density 95 (PSD95), synaptophysin (Syp), synaptotagmin1 (Syt-1). The synaptic ultrastructures were observed by transmission electron microscopy (TEM), and the dendritic architecture of TNC neurons was observed by Golgi-Cox staining. RESULTS: Statistical analyses revealed that repeated infusions of IS induced mechanical allodynia and significantly increased the expression of NR2B Tyr-1472 phosphorylation (pNR2B-Y1472) and NR2B Tyr-1252 phosphorylation (pNR2B-Y1252) in the TNC. Furthermore, the inhibition of NR2B-pTyr by PP2 and genistein relieved allodynia and reduced the expression of CGRP, SP, PSD95, Syp and Syt-1 and synaptic transmission. CONCLUSIONS: These data indicate that NR2B-pTyr might regulate synaptic plasticity in central sensitization in a CM rat model. The inhibition of NR2B tyrosine phosphorylation has a protective effect on threshold dysfunction and migraine attacks through the regulation of synaptic plasticity in central sensitization.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Modelos Animais de Doenças , Transtornos de Enxaqueca/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Tirosina/metabolismo , Animais , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Transtornos de Enxaqueca/patologia , Neurônios/metabolismo , Neurônios/patologia , Dor/metabolismo , Dor/patologia , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/patologia
7.
Cell Signal ; 101: 110524, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379377

RESUMO

Src Family Kinases (SFKs) are tyrosine kinases known to regulate glucose and fatty acid metabolism as well as oxidative phosphorylation (OXPHOS) in mammalian mitochondria. We and others discovered the association of the SFK kinases Fyn and c-Src with mitochondrial translation components. This translational system is responsible for the synthesis of 13 mitochondrial (mt)-encoded subunits of the OXPHOS complexes and is, thus, essential for energy generation. Mitochondrial ribosomal proteins and various translation elongation factors including Tu (EF-Tumt) have been identified as possible Fyn and c-Src kinase targets. However, the phosphorylation of specific residues in EF-Tumt by these kinases and their roles in the regulation of protein synthesis are yet to be explored. In this study, we report the association of EF-Tumt with cSrc kinase and mapping of phosphorylated Tyr (pTyr) residues by these kinases. We determined that a specific Tyr residue in EF-Tumt at position 266 (EF-Tumt-Y266), located in a highly conserved c-Src consensus motif is one of the major phosphorylation sites. The potential role of EF-Tumt-Y266 phosphorylation in regulation of mitochondrial translation investigated by site-directed mutagenesis. Its phosphomimetic to Glu residue (EF-Tumt-E266) inhibited ternary complex (EF-Tumt•GTP•aatRNA) formation and translation in vitro. Our findings along with data mining analysis of the c-Src knock out (KO) mice proteome suggest that the SFKs have possible roles for regulation of mitochondrial protein synthesis and oxidative energy metabolism in animals.


Assuntos
Proteínas Mitocondriais , Fator Tu de Elongação de Peptídeos , Animais , Camundongos , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fosforilação , Proteína Tirosina Quinase CSK , Proteínas Mitocondriais/metabolismo , Mamíferos/metabolismo , Fosforilação Oxidativa , Quinases da Família src/metabolismo , Proteínas Proto-Oncogênicas c-fyn
8.
mBio ; 12(6): e0322821, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34933455

RESUMO

The nature and the intensity of innate immune response to virus infection determine the course of pathogenesis in the host. Among the many pathogen-associated molecular pattern recognition receptors, STING, an endoplasmic reticulum (ER)-associated protein, plays a pivotal role in triggering responses to microbial or cellular cytoplasmic DNA. Herpes simplex virus 1 (HSV-1), a common human pathogen, activates STING signaling, and the resultant induction of type I interferon causes inhibition of virus replication. In this context, we have observed that phosphorylation of Tyr245 of STING by epidermal growth factor receptor kinase is necessary for interferon induction. Here, we report that phosphorylation of Tyr240 by the tyrosine kinase Syk is essential for all signaling activities of STING. Our analysis showed that upon ligand-binding, STING dimerizes and interacts with membrane-bound EGFR, which autophosphorylates and provides the platform for the recruitment of cytoplasmic Syk to the signaling complex and its activation. Activated Syk phosphorylates Tyr240 of STING, followed by phosphorylation of Tyr245 by epidermal growth factor receptor (EGFR). Pharmacological or genetic ablation of Syk activity resulted in an arrest of STING in the ER compartment and a complete block of gene induction. Consequently, in the absence of Syk, HSV-1 could not induce interferon, and it replicated more robustly. IMPORTANCE The innate immune response to virus infection leads to interferon production and inhibition of viral replication. STING, an ER-bound protein, mediates such a response to cytoplasmic cellular or microbial DNA. HSV-1, a DNA virus, activates STING, and it replicates more efficiently in the absence of STING signaling. We demonstrate that phosphorylation of Tyr240 of STING by the protein tyrosine kinase Syk is essential for STING-mediated gene induction. To signal, ligand-activated STING recruits two kinases, Syk and EGFR, which phosphorylate Tyr240 and Tyr245, respectively. The dependence of STING signaling on Syk has broad significance, because STING plays a major role in many microbial, mitochondrial, and autoimmune diseases as well as in cancer development and therapy.


Assuntos
Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Quinase Syk/metabolismo , Motivos de Aminoácidos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Humanos , Interferon beta/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Fosforilação , Quinase Syk/genética , Replicação Viral
9.
J Biomol Struct Dyn ; 38(1): 114-123, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30688163

RESUMO

Deinococcus RecA (DrRecA) protein is a key repair enzyme and contributes to efficient DNA repair of Deinococcus radiodurans. Phosphorylation of DrRecA at Y77 (tyrosine 77) and T318 (threonine 318) residues modifies the structural and conformational switching that impart the efficiency and activity of DrRecA. Dynamics comparisons of DrRecA with its phosphorylated analogues support the idea that phosphorylation of Y77 and T318 sites could change the dynamics and conformation plasticity of DrRecA. Furthermore, docking studies showed that phosphorylation increases the binding preference of DrRecA towards dATP versus ATP and for double-strand DNA versus single-strand DNA. This work supporting the idea that phosphorylation can modulate the crucial functions of this protein and having good concordance with the experimental data. AbbreviationsDrRecADeinococcus RecADSBDNA double-strand breakshDNAheteroduplex DNASTYPKserine/threonine/tyrosine protein kinaseT318threonine 318Y77tyrosine 77Communicated by Ramaswamy H. Sarma.


Assuntos
Deinococcus/enzimologia , Deinococcus/efeitos da radiação , Tolerância a Radiação , Recombinases Rec A/química , Recombinases Rec A/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Dano ao DNA , Reparo do DNA , DNA de Cadeia Simples , Modelos Moleculares , Fosforilação , Relação Estrutura-Atividade
10.
FEBS Lett ; 594(15): 2339-2369, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32337704

RESUMO

Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Fosfoproteínas/metabolismo , Animais , Humanos , Fosforilação , Serina/metabolismo , Espectrometria de Massas em Tandem , Treonina/metabolismo , Tirosina/metabolismo
11.
Free Radic Biol Med ; 112: 69-83, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28712859

RESUMO

Dysregulation of reactive oxygen species (ROS) levels is implicated in the pathogenesis of several diseases, including cancer. However, the molecular mechanisms for ROS in tumorigenesis have not been well established. In this study, hydrogen peroxide activated nuclear factor-κB (NF-κB) and RhoA GTPase. In particular, we found that hydrogen peroxide lead to phosphorylation of RhoA at Tyr42 via tyrosine kinase Src. Phospho-Tyr42 (p-Tyr42) residue of RhoA is a binding site for Vav2, a guanine nucleotide exchange factor (GEF), which then activates p-Tyr42 form of RhoA. P-Tyr42 RhoA then binds to IκB kinase γ (IKKγ), leading to IKKß activation. Furthermore, RhoA WT and phospho-mimic RhoA, RhoA Y42E, both promoted tumorigenesis, whereas the dephospho-mimic RhoA, RhoA Y42F suppressed it. In addition, hydrogen peroxide induced NF-κB activation and cell proliferation, along with expression of c-Myc and cyclin D1 in the presence of RhoA WT and RhoA Y42E, but not RhoA Y42F. Indeed, levels of p-Tyr42 Rho, p-Src, and p-65 are significantly increased in human breast cancer tissues and show correlations between each of the two components. Conclusively, the posttranslational modification of as RhoA p-Tyr42 may be essential for promoting tumorigenesis in response to generation of ROS.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , NF-kappa B/genética , Proteína rhoA de Ligação ao GTP/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células HT29 , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Transplante de Neoplasias , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Células RAW 264.7 , Transdução de Sinais , Tirosina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Biol Open ; 5(9): 1189-99, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402964

RESUMO

Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by ß1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca(2+) dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton.

13.
Syst Biol Reprod Med ; 60(4): 239-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24673547

RESUMO

A wide variety of sperm preparation protocols are currently available for assisted conception. They include density gradient separation and washing methods. Both aim at isolating and capacitating as much motile sperm as possible for subsequent oocyte fertilization. The aim of this study was to examine the effects of four commercial sperm washing buffers on sperm viability and capacitation. Semen samples from 48 healthy donors (normal values of sperm count, motility, morphology, and volume) were analyzed. After separation (density gradient 40/80%), sperm were incubated in various buffers then analysed for reactive oxygen species (ROS) production, viability, tyrosine phosphorylation (Tyr-P), cholera toxin B subunit (CTB) labeling, and the acrosome reaction (AR). The buffers affected ROS generation in various ways resulting either in rapid cell degeneration (when the amount of ROS was too high for cell survival) or the inability of the cells to maintain correct functioning (when ROS were too few). Only when the correct ROS generation curve was maintained, suitable membrane reorganization, evidenced by CTB labeling was achieved, leading to the highest percentages of both Tyr-P- and acrosome-reacted-cells. Distinguishing each particular pathological state of the sperm sample would be helpful to select the preferred buffer treatment since both ROS production and membrane reorganization can be significantly altered by commercial buffers.


Assuntos
Soluções Tampão , Preservação do Sêmen/métodos , Capacitação Espermática/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Adulto , Gangliosídeo G(M1)/análise , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Reprodução Assistida , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/química , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA