Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.484
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 115(4): 937-951, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154288

RESUMO

Plant height (PH) is an important agronomic trait affecting crop architecture, biomass, resistance to lodging and mechanical harvesting. Elucidating the genetic governance of plant height is crucial because of the global demand for high crop yields. However, during the rapid growth period of plants the PH changes a lot on a daily basis, which makes it difficult to accurately phenotype the trait by hand on a large scale. In this study, an unmanned aerial vehicle (UAV)-based remote-sensing phenotyping platform was applied to obtain time-series PHs of 320 upland cotton accessions in three different field trials. The results showed that the PHs obtained from UAV images were significantly correlated with ground-based manual measurements, for three trials (R2 = 0.96, 0.95 and 0.96). Two genetic loci on chromosomes A01 and A11 associated with PH were identified by genome-wide association studies (GWAS). GhUBP15 and GhCUL1 were identified to influence PH in further analysis. We obtained a time series of PH values for three field conditions based on remote sensing with UAV. The key genes identified in this study are of great value for the breeding of ideal plant architecture in cotton.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Dispositivos Aéreos não Tripulados , Fatores de Tempo , Melhoramento Vegetal
2.
J Anim Ecol ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39421883

RESUMO

Three-dimensional (3D) vegetation structure influences animal movements and, consequently, ecosystem functions. Animals disperse the seeds of 60%-90% of trees in tropical rainforests, which are among the most structurally complex ecosystems on Earth. Here, we investigated how 3D rainforest structure influences the movements of large, frugivorous birds and resulting spatial patterns of seed dispersal. We GPS-tracked white-thighed (Bycanistes albotibialis) and black-casqued hornbills (Ceratogymna atrata) in a study area surveyed by light detection and ranging (LiDAR) in southern Cameroon. We found that both species preferred areas of greater canopy height and white-thighed hornbill preferred areas of greater vertical complexity. In addition, 33% of the hornbills preferred areas close to canopy gaps, while 16.7% and 27.8% avoided large and small gaps, respectively. White-thighed hornbills avoided swamp habitats, while black-casqued increased their preference for swamps during the hottest temperatures. We mapped spatial probabilities of seed dispersal by hornbills, showing that 3D structural attributes shape this ecological process by influencing hornbill behaviour. These results provide evidence of a possible feedback loop between rainforest vegetation structure and seed dispersal by animals. Interactions between seed dispersers and vegetation structure described here are essential for understanding ecosystem functions in tropical rainforests and critical for predicting how rainforests respond to anthropogenic impacts.

3.
Environ Res ; 250: 118520, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401683

RESUMO

The sedentary and less active lifestyle of modern college students has a significant impact on the physical and mental well-being of the college community. Campus Green Spaces (GSs) are crucial in promoting physical activity and improving students' health. However, previous research has focused on evaluating campuses as a whole, without considering the diverse spatial scenarios within the campus environment. Accordingly, this study focused on the young people's residential scenario in university and constructed a framework including a comprehensive set of objective and subjective GSs exposure metrics. A systematic, objective exposure assessment framework ranging from 2D (GSs areas), and 2.5D (GSs visibility) to 3D (GSs volume) was innovatively developed using spatial analysis, deep learning technology, and unmanned aerial vehicle (UAV) measurement technology. Subjective exposure metrics incorporated GSs visiting frequency, GSs visiting duration, and GSs perceived quality. Our cross-sectional study was based on 820 university students in Nanjing, China. Subjective measures of GSs exposure, physical activity, and health status were obtained through self-reported questionnaires. The Generalized Linear Model (GLM) was used to evaluate the associations between GSs exposure, physical activity, and perceived health. Physical activity and social cohesion were considered as mediators, and path analysis based on Structural Equation Modeling (SEM) was used to disentangle the mechanisms linking GSs exposure to the health status of college students. We found that (1) 2D indicator suggested significant associations with health in the 100m buffer, and the potential underlying mechanisms were: GSs area → Physical activity → Social cohesion → Physical health → Mental health; GSs area → Physical activity → Social cohesion → Mental health. (2) Subjective GSs exposure indicators were more relevant in illustrating exposure-response relationships than objective ones. This study can clarify the complex nexus and mechanisms between campus GSs, physical activity, and health, and provide a practical reference for health-oriented campus GSs planning.


Assuntos
Exercício Físico , Estudantes , Humanos , Estudantes/psicologia , Masculino , Adulto Jovem , Feminino , Universidades , Estudos Transversais , China , Adolescente , Nível de Saúde
4.
Int J Health Geogr ; 23(1): 13, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764024

RESUMO

BACKGROUND: In the near future, the incidence of mosquito-borne diseases may expand to new sites due to changes in temperature and rainfall patterns caused by climate change. Therefore, there is a need to use recent technological advances to improve vector surveillance methodologies. Unoccupied Aerial Vehicles (UAVs), often called drones, have been used to collect high-resolution imagery to map detailed information on mosquito habitats and direct control measures to specific areas. Supervised classification approaches have been largely used to automatically detect vector habitats. However, manual data labelling for model training limits their use for rapid responses. Open-source foundation models such as the Meta AI Segment Anything Model (SAM) can facilitate the manual digitalization of high-resolution images. This pre-trained model can assist in extracting features of interest in a diverse range of images. Here, we evaluated the performance of SAM through the Samgeo package, a Python-based wrapper for geospatial data, as it has not been applied to analyse remote sensing images for epidemiological studies. RESULTS: We tested the identification of two land cover classes of interest: water bodies and human settlements, using different UAV acquired imagery across five malaria-endemic areas in Africa, South America, and Southeast Asia. We employed manually placed point prompts and text prompts associated with specific classes of interest to guide the image segmentation and assessed the performance in the different geographic contexts. An average Dice coefficient value of 0.67 was obtained for buildings segmentation and 0.73 for water bodies using point prompts. Regarding the use of text prompts, the highest Dice coefficient value reached 0.72 for buildings and 0.70 for water bodies. Nevertheless, the performance was closely dependent on each object, landscape characteristics and selected words, resulting in varying performance. CONCLUSIONS: Recent models such as SAM can potentially assist manual digitalization of imagery by vector control programs, quickly identifying key features when surveying an area of interest. However, accurate segmentation still requires user-provided manual prompts and corrections to obtain precise segmentation. Further evaluations are necessary, especially for applications in rural areas.


Assuntos
Mudança Climática , Humanos , Animais , Malária/epidemiologia , Mosquitos Vetores , Tecnologia de Sensoriamento Remoto/métodos , Sistemas de Informação Geográfica , Processamento de Imagem Assistida por Computador/métodos
5.
Am J Emerg Med ; 84: 135-140, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116674

RESUMO

INTRODUCTION: Unmanned aerial vehicles (UAVs), more commonly known as drones, have rapidly become more diverse in capabilities and utilization through technology advancements and affordability. While drones have had significant positive impact on healthcare and consumer delivery particularly in remote and austere environments, Violent Non-State Actors (VNSAs) have increasingly used drones as weapons in planning and executing terrorist attacks resulting in significant morbidity and mortality. We aim to analyze drone-related attacks globally against civilians and critical infrastructure for more effective hospital and prehospital care preparedness. METHODS: We retrospectively reviewed the Global Terrorism Database (GTD) from 1970 to 2020 to analyze the worldwide prevalence of drone-related attacks against civilians and critical infrastructure. Cases were excluded if they had insufficient information regarding a drone involvement, and if attacks were conducted by the government entities. The trends in the number of attacks per month, as well as the number of fatalities and injuries, were examined using time series and trend analysis. RESULTS: The database search yielded 253 drone-related incidents, 173 of which met inclusion criteria. These incidents resulted in 92 fatalities and 215 injuries with civilian targets most commonly attacked by drones (76 events, 43.9%), followed by military (46 events, 26.5-%). The Middle East region was most affected (168 events, 97% of attacks) and the Islamic state of Iraq was the most common perpetrator (106 events, 61.2%). Almost all attacks were by explosive devices attached to drones (172 events, 99.4%). Time series with linear trend analyses suggested an upward trends of drone attacks by VNSAs, resulting in a greater number of injuries and fatalities, that became more frequent over the years. CONCLUSIONS: Overtime, there were upward trends of drone attacks, with higher lethality and morbidity. There were more injuries compared to fatalities. Most common region affected was the Middle East, and most common type of weapon employed by drone technology was explosive weapon. Investment in medical personnel training, security, and research is crucial for an effective mass-casualty incident response after the drone attacks.


Assuntos
Dispositivos Aéreos não Tripulados , Humanos , Estudos Retrospectivos , Terrorismo , Medicina de Desastres , Aeronaves , Bases de Dados Factuais , Ferimentos e Lesões/epidemiologia , Ferimentos e Lesões/mortalidade
7.
Am J Primatol ; : e23676, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148233

RESUMO

Using unmanned aerial vehicles (UAVs) for surveys on thermostatic animals has gained prominence due to their ability to provide practical and precise dynamic censuses, contributing to developing and refining conservation strategies. However, the practical application of UAVs for animal monitoring necessitates the automation of image interpretation to enhance their effectiveness. Based on our past experiences, we present the Sichuan snub-nosed monkey (Rhinopithecus roxellana) as a case study to illustrate the effective use of thermal cameras mounted on UAVs for monitoring monkey populations in Qinling, a region characterized by magnificent biodiversity. We used the local contrast method for a small infrared target detection algorithm to collect the total population size. Through the experimental group, we determined the average optimal grayscale threshold, while the validation group confirmed that this threshold enables automatic detection and counting of target animals in similar datasets. The precision rate obtained from the experiments ranged from 85.14% to 97.60%. Our findings reveal a negative correlation between the minimum average distance between thermal spots and the count of detected individuals, indicating higher interference in images with closer thermal spots. We propose a formula for adjusting primate population estimates based on detection rates obtained from UAV surveys. Our results demonstrate the practical application of UAV-based thermal imagery and automated detection algorithms for primate monitoring, albeit with consideration of environmental factors and the need for data preprocessing. This study contributes to advancing the application of UAV technology in wildlife monitoring, with implications for conservation management and research.

8.
Ecotoxicol Environ Saf ; 282: 116675, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38971099

RESUMO

Unmanned aerial vehicle (UAV) sprayers are widely utilized in commercial aerial application of plant protection products (PPPs) in East Asian countries due to their high flexibility, high efficiency and low cost, but spray drift can lead to low utilization of UAV sprayers application, environmental pollution and bystander exposure risk. Droplet size and spray volume are critical factors affecting spray drift. Currently, the high temperature and humidity environment under the influence of the tropical monsoon climate brings new challenges for UAV sprayers. Therefore, in this study, pesticides were simulated with seduction red solution, and spraying trials were conducted using the DJI commercial T40 UAV sprayers for a typical tropical crop, coconut. In this study, the spray drift distribution of droplets on the ground and in the air, as well as the bystander exposure risk, were comparatively analyzed using droplet size (VF, M, and C) and spray volume (75 L/hm2 and 60 L/hm2) as trial variables. The results indicated that the spray drift characteristics of UAV sprayers were significantly affected by droplet size and spray volume. The spray drift percentage was negatively correlated with the downwind distance and the sampling height. The smaller the droplet size, the farther the buffer zone distance, up to more than 30 m, and the cumulative drift percentage is also greater, resulting in a significant risk of spray drift. The reduction in spray volume helped to reduce the spray drift, and the cumulative drift percentage was reduced by 73.87 % with a droplet size of M. The region of the body where spray drift is deposited the most on bystanders is near chest height. This study provides a reference for the rational and safe use of multirotor UAV sprayers application operations in the tropics and enriches the spray drift database in the tropics.


Assuntos
Cocos , Cocos/química , Medição de Risco , Tamanho da Partícula , Agricultura/métodos , Humanos , Exposição Ambiental , Praguicidas/análise
9.
Risk Anal ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317929

RESUMO

The prediction of unmanned aerial vehicle (UAV) operators' unsafe acts is critical for preventing UAV incidents. However, there is a lack of research specifically focusing on UAV operators' unsafe acts, and existing approaches in related areas often lack precision and effectiveness. To address this, we propose a hybrid approach that combines the Human Factors Analysis and Classification System (HFACS) with random forest (RF) to predict and warn against UAV operators' unsafe acts. Initially, we introduce an improved HFACS framework to identify risk factors influencing the unsafe acts. Subsequently, we utilize the adaptive synthetic sampling algorithm (ADASYN) to rectify the imbalance in the dataset. The RF model is then used to construct a risk prediction and early warning model, as well as to identify critical risk factors associated with the unsafe acts. The results obtained through the improved HFACS framework reveal 33 risk factors, encompassing environmental influences, industry influences, unsafe supervision, and operators' states, contributing to the unsafe acts. The RF model demonstrates a significant improvement in prediction performance after applying ADASYN. The critical risk factors associated with the unsafe acts are identified as weak safety awareness, allowing unauthorized flight activities, lack of legal awareness, lack of supervision system, and obstacles. The findings of this study can assist policymakers in formulating effective measures to mitigate incidents resulting from UAV operators' unsafe acts.

10.
Sensors (Basel) ; 24(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339713

RESUMO

An Internet of Things (IoT) system for managing and coordinating unmanned aerial vehicles (UAVs) has revolutionized the industrial sector. The largest issue with the design of the Internet of UAVs (IoUAV) is security. Conspicuously, the novel contribution of the proposed work is to develop a layered authentication approach to facilitate safe IoUAV communication. Specifically, four modules, including the pre-deployment module, user registration module, login module, and authentication module, form the basis of security analysis. In the proposed technique, UAVs are added to the IoUAV registry. The next step is the user registration module, where people are registered with the UAV so they may access the information in real time. In the login module, the user connects with the server for data transmission. Finally, in the authentication module, all entities, including users, servers, and UAVs, are authenticated to ensure secure data communication. The proposed method achieves peak performance as compared to the state-of-the-art techniques in terms of statistical parameters of latency (3.255s), throughput (90.15%), and packet loss (8.854%).

11.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400501

RESUMO

The trajectory or moving-target tracking feature is desirable, because it can be used in various applications where the usefulness of UAVs is already proven. Tracking moving targets can also be applied in scenarios of cooperation between mobile ground-based and flying robots, where mobile ground-based robots could play the role of mobile landing pads. This article presents a novel proposition of an approach to position-tracking problems utilizing artificial potential fields (APF) for quadcopter UAVs, which, in contrast to well-known APF-based path planning methods, is a dynamic problem and must be carried out online while keeping the tracking error as low as possible. Also, a new flight control is proposed, which uses roll, pitch, and yaw angle control based on the velocity vector. This method not only allows the UAV to track a point where the potential function reaches its minimum but also enables the alignment of the course and velocity to the direction and speed given by the velocity vector from the APF. Simulation results present the possibilities of applying the APF method to holonomic UAVs such as quadcopters and show that such UAVs controlled on the basis of an APF behave as non-holonomic UAVs during 90° turns. This allows them and the onboard camera to be oriented toward the tracked target. In simulations, the AR Drone 2.0 model of the Parrot quadcopter is used, which will make it possible to easily verify the method in real flights in future research.

12.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610394

RESUMO

This paper proposes a new sensor using optical flow to stabilize a quadrotor when a GPS signal is not available. Normally, optical flow varies with the attitude of the aerial vehicle. This produces positive feedback on the attitude control that destabilizes the orientation of the vehicle. To avoid this, we propose a novel sensor using an optical flow camera with a 6DoF IMU (Inertial Measurement Unit) mounted on a two-axis anti-shake stabilizer mobile aerial gimbal. We also propose a robust algorithm based on Sliding Mode Control for stabilizing the optical flow sensor downwards independently of the aerial vehicle attitude. This method improves the estimation of the position and velocity of the quadrotor. We present experimental results to show the performance of the proposed sensor and algorithms.

13.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475132

RESUMO

Flight parameters are crucial criteria for UAV control, playing a significant role in ensuring the safe and efficient completion of missions. Launch force and airspeed information are key parameters in the early and middle stages of flight, serving as important data for monitoring the UAV's flight status. In response to challenges such as weak launch force, low identification rates, small airspeed, and low recognition accuracy in UAVs, a method for identifying UAV flight parameters based on launch force and airspeed is proposed. From the aspect of launch force identification, a recognition method based on a low-g value accelerometer information source is proposed, utilizing a 'multi-level time window + threshold' approach. For airspeed identification, an optimization method for airspeed measurement under the Kalman filter architecture is introduced. A device for airspeed measurement based on pressure sensors is designed, and the recommended installation position is determined through simulation. Furthermore, the feasibility and robustness of the proposed launch force identification and airspeed measurement optimization methods are validated through simulation. Finally, the effectiveness of the design is verified through centrifuge and wind tunnel experiments. This research provides technical support for the identification of the launch force and airspeed measurement in UAVs.

14.
Sensors (Basel) ; 24(19)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39409478

RESUMO

Due to the lack of real-time planning for fire escape routes in large buildings, the current route planning methods fail to adequately consider factors related to the fire situation. This study introduces a real-time fire monitoring and dynamic path planning system based on an improved ant colony algorithm, comprising a hierarchical arrangement of upper and lower computing units. The lower unit employs an array of sensors to collect environmental data in real time, which is subsequently transmitted to an upper-level computer equipped with LabVIEW. Following a comprehensive data analysis, pertinent visualizations are presented. Capitalizing on the acquired fire situational awareness, a propagation model for fire spreading is developed. An enhanced ant colony algorithm is then deployed to calculate and plan escape routes by introducing a fire spread model to enhance the accuracy of escape route planning and incorporating the A* algorithm to improve the convergence speed of the ant colony algorithm. In response to potential anomalies in sensor data under elevated temperature conditions, a correction model for data integrity is proposed. The real-time depiction of escape routes is facilitated through the integration of LabVIEW2018 and MATLAB2023a, ensuring the dependability and safety of the path planning process. Empirical results demonstrate the system's capability to perform real-time fire surveillance coupled with efficient escape route planning. When benchmarked against the traditional ant colony algorithm, the refined version exhibits expedited convergence, augmented real-time performance, and effectuates an average reduction of 17.1% in the length of the escape trajectory. Such advancements contribute significantly to enhancing evacuation efficiency and minimizing potential casualties.

15.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123844

RESUMO

A lightweight aircraft visual navigation algorithm that fuses neural networks is proposed to address the limited computing power issue during the offline operation of aircraft edge computing platforms in satellite-denied environments with complex working scenarios. This algorithm utilizes object detection algorithms to label dynamic objects within complex scenes and performs dynamic feature point elimination to enhance the feature point extraction quality, thereby improving navigation accuracy. The algorithm was validated using an aircraft edge computing platform, and comparisons were made with existing methods through experiments conducted on the TUM public dataset and physical flight experiments. The experimental results show that the proposed algorithm not only improves the navigation accuracy but also has high robustness compared with the monocular ORB-SLAM2 method under the premise of satisfying the real-time operation of the system.

16.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000823

RESUMO

Unmanned aerial vehicle (UAV)-based object detection methods are widely used in traffic detection due to their high flexibility and extensive coverage. In recent years, with the increasing complexity of the urban road environment, UAV object detection algorithms based on deep learning have gradually become a research hotspot. However, how to further improve algorithmic efficiency in response to the numerous and rapidly changing road elements, and thus achieve high-speed and accurate road object detection, remains a challenging issue. Given this context, this paper proposes the high-efficiency multi-object detection algorithm for UAVs (HeMoDU). HeMoDU reconstructs a state-of-the-art, deep-learning-based object detection model and optimizes several aspects to improve computational efficiency and detection accuracy. To validate the performance of HeMoDU in urban road environments, this paper uses the public urban road datasets VisDrone2019 and UA-DETRAC for evaluation. The experimental results show that the HeMoDU model effectively improves the speed and accuracy of UAV object detection.

17.
Sensors (Basel) ; 24(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39000859

RESUMO

This paper investigates the performance of dual-hop unmanned aerial vehicle (UAV)-assisted communication channels, employing a decode-and-forward (DF) relay architecture. The system leverages terahertz (THz) communication for the primary hop and visible light communication (VLC) for the secondary hop. We conduct an in-depth analysis by deriving closed-form expressions for the end-to-end (E2E) bit error rate (BER). Additionally, we use a Monte Carlo simulation approach to generate best-fitting curves, validating our analytical expressions. A performance evaluation through BER and outage probability metrics demonstrates the effectiveness of the proposed system. Specifically, our results indicate that the proposed system outperforms Free-Space Optics (FSO)-VLC and Radio-Frequency (RF)-VLC at a higher signal-to-noise ratio (SNR). The results of this study provide valuable insights into the feasibility and limitations of UAV-assisted THz-VLC communication systems.

18.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000929

RESUMO

Defect inspection of existing buildings is receiving increasing attention for digitalization transfer in the construction industry. The development of drone technology and artificial intelligence has provided powerful tools for defect inspection of buildings. However, integrating defect inspection information detected from UAV images into semantically rich building information modeling (BIM) is still challenging work due to the low defect detection accuracy and the coordinate difference between UAV images and BIM models. In this paper, a deep learning-based method coupled with transfer learning is used to detect defects accurately; and a texture mapping-based defect parameter extraction method is proposed to achieve the mapping from the image U-V coordinate system to the BIM project coordinate system. The defects are projected onto the surface of the BIM model to enrich a surface defect-extended BIM (SDE-BIM). The proposed method was validated in a defect information modeling experiment involving the No. 36 teaching building of Nantong University. The results demonstrate that the methods are widely applicable to various building inspection tasks.

19.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001049

RESUMO

The use of magnetometers arranged in a gradiometer configuration offers a practical and widely used solution, particularly in archaeological applications where the sources of interest are generally shallow. Since magnetic anomalies due to archaeological remains often have low amplitudes, highly sensitive magnetic sensors are kept very close to the ground to reveal buried structures. However, the deployment of Unmanned Aerial Vehicles (UAVs) is increasingly becoming a reliable and valuable tool for the acquisition of magnetic data, providing uniform coverage of large areas and access to even very steep terrain, saving time and reducing risks. However, the application of a vertical gradiometer for drone-borne measurements is still challenging due to the instability of the system drone magnetometer in flight and noise issues due to the magnetic interference of the mobile platform or related to the oscillation of the suspended sensors. We present the implementation of a magnetic vertical gradiometer UAV system and its use in an archaeological area of Southern Italy. To reduce the magnetic and electromagnetic noise caused by the aircraft, the magnetometer was suspended 3m below the drone using ropes. A Continuous Wavelet Transform analysis of data collected in controlled tests confirmed that several characteristic power spectrum peaks occur at frequencies compatible with the magnetometer oscillations. This noise was then eliminated with a properly designed low-pass filter. The resulting drone-borne vertical gradient data compare very well with ground-based magnetic measurements collected in the same area and taken as a control dataset.

20.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001116

RESUMO

This study investigates the dynamic deployment of unmanned aerial vehicles (UAVs) using edge computing in a forest fire scenario. We consider the dynamically changing characteristics of forest fires and the corresponding varying resource requirements. Based on this, this paper models a two-timescale UAV dynamic deployment scheme by considering the dynamic changes in the number and position of UAVs. In the slow timescale, we use a gate recurrent unit (GRU) to predict the number of future users and determine the number of UAVs based on the resource requirements. UAVs with low energy are replaced accordingly. In the fast timescale, a deep-reinforcement-learning-based UAV position deployment algorithm is designed to enable the low-latency processing of computational tasks by adjusting the UAV positions in real time to meet the ground devices' computational demands. The simulation results demonstrate that the proposed scheme achieves better prediction accuracy. The number and position of UAVs can be adapted to resource demand changes and reduce task execution delays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA