Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Stem Cells ; 42(8): 752-762, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829368

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) possess the potential to differentiate into cartilage cells. Long noncoding RNA (lncRNAs) urothelial carcinoma associated 1 (UCA1) has been confirmed to improve the chondrogenic differentiation of marrow mesenchymal stem cells (MSCs). Herein, we further investigated the effects and underlying mechanisms of these processes. The expression of UCA1 was positively associated with chondrogenic differentiation and the knockdown of UCA1 has been shown to attenuate the expression of chondrogenic markers. RNA pull-down assay and RNA immunoprecipitation showed that UCA1 could directly bind to PARP1 protein. UCA1 could improve PARP1 protein via facilitating USP9X-mediated PARP1 deubiquitination. Then these processes stimulated the NF-κB signaling pathway. In addition, PARP1 was declined in UCA1 knockdown cells, and silencing of PARP1 could diminish the increasing effects of UCA1 on the chondrogenic differentiation from MSCs and signaling pathway activation. Collectively, these outcomes suggest that UCA1 could act as a mediator of PARP1 protein ubiquitination and develop the chondrogenic differentiation of MSCs.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Poli(ADP-Ribose) Polimerase-1 , RNA Longo não Codificante , Ubiquitinação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Diferenciação Celular/genética , Condrogênese/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Transdução de Sinais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , NF-kappa B/metabolismo
2.
Carcinogenesis ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742453

RESUMO

Long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been implicated in several tumors. UCA1 promotes cell proliferation, migration and invasion of GC cells, but the molecular mechanism has not been fully elucidated. This study revealed the oncogenic effects of UCA1 on cell growth and invasion. Furthermore, UCA1 expression was significantly correlated with the overall survival of GC patients, and the clinicopathological indicators, including tumor size, depth of invasion, lymph node metastasis, and TNM stage. Additionally, miR-1-3p was identified as a downstream target of UCA1, which was negatively regulated by UCA1. MiR-1-3p inhibited cell proliferation and vasculogenic mimicry (VM), and induced cell apoptosis by upregulating BAX, BAD, and tumor suppressor TP53 expression levels. Moreover, miR-1-3p almost completely reversed the oncogenic effect caused by UCA1, including cell growth, migration and VM formation. This study also confirmed UCA1 promoted tumor growth in vivo. In this study, we also revealed the correlation between UCA1 and VM formation, which is potentially crucial for tumor metastasis. Meanwhile, its downstream target miR-1-3p inhibited VM formation in GC cells. In summary, these findings indicate that UCA1/miR-1-3p axis is potential target for GC treatment.

3.
Curr Issues Mol Biol ; 46(3): 2772-2797, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534790

RESUMO

Gynecological cancers (GC) represent some of the most frequently diagnosed malignancies in women worldwide. Long-non-coding RNAs (lncRNAs) are regulatory RNAs increasingly being recognized for their role in tumor progression and metastasis in various cancers. Urothelial cancer-associated 1 (UCA1) is a lncRNA, first found deregulated in bladder cancer, and many studies have exposed its oncogenic effects in more tumors since. However, the role of UCA1 in gynecological malignancies is still unclear. This review aims to analyze and define the role of UCA1 in GC, in order to identify its potential use as a diagnostic, prognostic, or therapeutic biomarker of GC. By employing the search terms "UCA1", "breast cancer", "endometrial cancer", "ovarian cancer", "cervical cancer", "vaginal cancer", and "vulvar cancer" in the PubMed database for the literature review, we identified a total of sixty-three relevant research articles published between 2014 and 2024. Although there were some opposing results, UCA1 was predominantly found to be upregulated in most of the breast, endometrial, ovarian, cervical, and vulvar cancer cells, tissue samples, and mouse xenograft models. UCA1 overexpression mainly accounts for enhanced tumor proliferation and increased drug resistance, while also being associated with some clinicopathological features, such as a high histological grade or poor prognosis. Nonetheless, no reviews were identified about the involvement of UCA1 in vaginal carcinogenesis. Therefore, further clinical trials are required to explore the role of UCA1 in these malignancies and, additionally, examine its possible application as a target for upcoming treatments, or as a novel biomarker for GC diagnosis and prognosis.

4.
Mol Med ; 30(1): 64, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760723

RESUMO

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Assuntos
Endometriose , Glutaminase , Glutamina , Estabilidade de RNA , RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Glutaminase/metabolismo , Glutaminase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Glutamina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Ligação Proteica
5.
Mol Carcinog ; 63(3): 384-399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38116886

RESUMO

Long noncoding RNA urothelial carcinoma associated 1 (UCA1) has been identified as a key molecule in human cancers. However, its functional implications remain unspecified in the context of cervical cancer (CC). This research aims to identify the regulatory mechanism of UCA1 in CC. UCA1 was identified through microarray and confirmed through a quantitative real-time polymerase chain reaction. Proteins that bind with UCA1 were recognized using RNA pull-down assays along with RNA immunoprecipitation. Ubiquitination assays and coimmunoprecipitation were performed to explore the molecular mechanisms of the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily d, member 3 (SMARCD3) downregulated in CC. The effects of UCA1 and SMARCD3 on the progression of CC were investigated through gain- and loss-of-function assays and xenograft tumor formation in vivo. In this study, UCA1 was found to be upregulated in CC cells as well as in human plasma exosomes for the first time. Functional studies indicated that UCA1 promotes CC progression. Mechanically, UCA1 downregulated the SMARCD3 protein stabilization by promoting SMARCD3 ubiquitination. Taken together, we revealed that the UCA1/SMARCD3 axis promoted CC progression, which could provide a new therapeutic target for CC.


Assuntos
Carcinoma de Células de Transição , MicroRNAs , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Invasividade Neoplásica/genética , Proliferação de Células/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
6.
FASEB J ; 37(1): e22657, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459147

RESUMO

Investigations on placental P-glycoprotein (P-gp) regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. The role of long noncoding RNA (lncRNA) on placental P-gp regulation is lacking. The present study was carried out to investigate the regulation and underlying mechanisms of lncRNA urothelial carcinoma associated 1 (UCA1) on P-gp in Bewo cells. lncRNA UCA1 inhibition or overexpression could decrease or increase ABCB1 mRNA expression, P-gp expression and its cellular efflux function, respectively. RNA-FISH revealed that lncRNA UCA1 was mainly located in the cytoplasm of Bewo cells. MicroRNA array was applied and 10 significant miRNAs was identified after lncRNA UCA1 inhibition. Databases of LncTarD, LncRNA2Target, and miRcode were further used to search potential target miRNAs of lncRNA UCA1 and miR-16-5p was screened out. Thereafter, we confirmed that miR-16-5p expression was significantly upregulated or reduced after lncRNA UCA1 knockdown or overexpression, respectively. Furthermore, we also proved that ABCB1 mRNA expression, P-gp expression and its cellular efflux function was enhanced or reduced after miR-16-5p inhibition or overexpression, respectively. The rescue experiment further indicated that miR-16-5p was involved in the positive regulation of lncRNA UCA1 on the expression and function of P-gp. Lastly, dual-luciferase reporter system, RNA-binding protein immunoprecipitation and RNA pull-down assays were performed to explore the relationships among lncRNA UCA1, miR-16-5p, and ABCB1. It was found that lncRNA UCA1(1103-1125) could directly interact with miR-16-5p and miR-16-5p could directly target ABCB1 coding DNA sequence region (882-907). In conclusion, LncRNA UCA1 could promote the expression and function of P-gp by sponging miR-16-5p in BeWo cells.


Assuntos
Carcinoma de Células de Transição , MicroRNAs , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Gravidez , Humanos , Feminino , RNA Longo não Codificante/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Placenta , Subfamília B de Transportador de Cassetes de Ligação de ATP , MicroRNAs/genética , RNA Mensageiro
7.
Cell Tissue Res ; 391(3): 561-575, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602629

RESUMO

Increasing evidence suggests that insulin resistance in type 2 diabetes mellitus (T2DM) is associated with mitochondrial dysfunction in skeletal muscle, while the underlying molecular mechanisms remain elusive. This study aims to construct a ceRNA regulatory network that is involved in mitochondrial dysfunction of skeletal muscle in T2DM. Based on GEO database analysis, differentially expressed lncRNA and mRNA profiles were identified in skeletal muscle tissues of T2DM. Next, LASSO regression analysis was conducted to predict the key lncRNAs related to T2DM, which was validated by receiver operating characteristic (ROC) analysis. Moreover, the miRNAs related to skeletal muscle in T2DM were identified by WGCNA, followed by construction of gene-gene interaction network and GO and KEGG enrichment analyses. It was found that 12 lncRNAs and 6 miRNAs were related to skeletal muscle in T2DM. Moreover, the lncRNA-miRNA-mRNA ceRNA network involving UCA1, miR-143-3p, and FGF21 was constructed. UCA1, and FGF21 were downregulated, while miR-143-3p was upregulated in skeletal muscle cells (SkMCs) exposed to palmitic acid. Additionally, ectopic expression experiments were performed in SkMCs to confirm the effects of UCA1/miR-143-3p/FGF21 on mitochondrial dysfunction by determining mitochondrial ROS, oxygen consumption rate (OCR), membrane potential, and ATP level. Overexpression of miR-143-3p increased ROS accumulation and reduced the OCR, fluorescence ratio of JC-1, and ATP level, which were reversed by upregulation of UCA1 or FGF21. Collectively, lncRNA UCA1 inhibited mitochondrial dysfunction of skeletal muscle in T2DM by sequestering miR-143-3p away from FGF21, therefore providing a potential therapeutic target for alleviating mitochondrial dysfunction of skeletal muscle in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , RNA Longo não Codificante , Humanos , Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Tipo 2/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
8.
Arch Biochem Biophys ; 748: 109783, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37816421

RESUMO

PURPOSE: Long non-coding RNA urothelial cancer associated 1 (UCA1) serves as an oncogene in various cancers. However, the mechanism underlying the role of UCA1 in pancreatic cancer remains unclear. This study aimed to explore the role of UCA1 in pancreatic cancer. METHODS: The expression and prognosis of UCA1 were analyzed using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The results were validated by immunohistochemistry (IHC) and qRT-PCR. The biofunctions of UCA1 were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The migration abilities and mitochondrial dynamics of PC cells were examined using the Transwell assay, mitochondrial membrane potential (MMP), and fluorescence. The mitochondrial-related protein and MAPK/ERK pathway markers were evaluated using western blotting. RESULTS: UCA1 expression was significantly higher in pancreatic cancer tissues than in normal tissues. High UCA1 expression indicated poor clinical outcomes and was associated with clinical features in patients with pancreatic cancer. Additionally, high UCA1 expression is a potential independent marker for poor prognosis. Subsequently, we demonstrated that UCA1 enhanced the migration capability, increased MMP, enhanced mitochondrial fusion, and inhibited mitochondrial autophagy in pancreatic cancer cells via the MAPK/ERK pathway. CONCLUSION: UCA1 promotes the migration by regulating the mitochondrial dynamics of pancreatic cancer cells via the MAPK/ERK pathway. Our findings suggest that UCA1 may serve as a potential biomarker in pancreatic cancer prognosis.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dinâmica Mitocondrial , Neoplasias da Bexiga Urinária/genética , Movimento Celular , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Neoplasias Pancreáticas
9.
Metab Brain Dis ; 38(3): 961-972, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515797

RESUMO

Parkinson's disease (PD) is an age-related neurodegenerative disease. Long non-coding RNA urothelial carcinoma-associated 1 (UCA1) is involved in the pathogenesis of PD. However, the pathogenesis of PD regulated by UCA1 has not been fully explained. We used 1-Methyl-4-phenylpyridinium (MPP+)-induced SK-N-SH cells for functional analysis. Expression levels of UCA1, microRNA (miR)-671-5p, and KPNA4 (karyopherin subunit alpha 4) mRNA were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were analyzed using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) or flow cytometry assays. Some protein levels were measured by western blotting. The levels of pro-inflammatory cytokines were tested by ELISA (enzyme-linked immunosorbent assay). The levels of LDH (lactate dehydrogenase), MDA (malondialdehyde), and SOD (superoxide dismutase) were measured using corresponding kits. The relationship between UCA1 or KPNA4 and miR-671-5p was verified by dual-luciferase reporter assay and/or RNA immunoprecipitation (RIP) assay. MPP+ induced UCA1 expression in SK-N-SH cells in a concentration-dependent manner or time-dependent manner. UCA1 knockdown reduced MPP+-induced apoptosis, inflammation, and oxidative stress in SK-N-SH cells. MiR-671-5p was downregulated while KPNA4 was upregulated in MPP+-treated SK-N-SH cells. UCA1 sponged miR-671-5p to regulate KPNA4 expression. MiR-671-5p inhibition counteracted UCA1 knockdown-mediated influence on apoptosis, inflammation, and oxidative stress of MPP+-induced SK-N-SH cells. KPNA4 overexpression offset the inhibitory influence of miR-671-5p mimic on apoptosis, inflammation, and oxidative stress of MPP+-treated SK-N-SH cells. UCA1 inhibition reduced MPP+-induced neuronal damage through the miR-671-5p/KPNA4 pathway in SK-N-SH cells, providing a novel mechanism to understand the pathogenesis of PD.


Assuntos
Carcinoma de Células de Transição , MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , 1-Metil-4-fenilpiridínio/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Doença de Parkinson/genética , Apoptose , alfa Carioferinas
10.
Heart Lung Circ ; 32(4): 544-551, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36463076

RESUMO

AIM: Long non-coding RNA (lncRNA) can be used as a biological marker for the diagnosis and treatment of various diseases. The study aimed to detect changes in the expression of lncRNA for urothelial carcinoma associated 1 (UCA1) in patients with cardiopulmonary bypass (CPB)-induced acute respiratory distress syndrome (ARDS). Clinical values and cell function in ARDS were explored. METHOD: In total, 195 patients without CPB-induced ARDS were included in the control group, and 85 patients with ARDS were included in the ARDS group. Serum UCA1 levels were measured by quantitative real-time polymerase chain reaction. A549 was used for the cell experiments by establishing oxygen-glucose deprivation/reperfusion (OGD/R) cell models, and the cell viability and apoptosis were tested. The concentration of inflammatory factors was tested by an enzyme-linked immunosorbent assay. A luciferase reporting assay was applied for target gene analysis. RESULTS: Quantitative real-time polymerase chain reaction revealed a gradual increase in serum UCA1 in both control and ARDS cases, and patients with ARDS had higher levels of UCA1 than those in the control group. Serum UCA1 was positively correlated with serum tumour necrosis factor-α and interleukin-6 concentration in patients with ARDS. UCA1 had the ability to distinguish patients with ARDS from those without it. UCA1 inhibition protected against lung injury and inhibited cell inflammation in vitro. MicroRNA (miR-182-5p) was downregulated in OGD/R-induced cell models and sponged by UCA1. CONCLUSIONS: Elevated expression of UCA1 may be associated with the occurrence of ARDS after CPB surgery. The regulatory role of UCA1 in ARDS might be related to inflammation and downregulated miR-182-5p in alveolar epithelial cells.


Assuntos
Ponte Cardiopulmonar , MicroRNAs , RNA Longo não Codificante , Síndrome do Desconforto Respiratório , Humanos , Células A549 , Apoptose , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Ponte Cardiopulmonar/efeitos adversos , Proliferação de Células , MicroRNAs/genética , MicroRNAs/imunologia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/imunologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia
11.
Toxicol Appl Pharmacol ; 441: 115977, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35288145

RESUMO

The main clinical manifestations are pulmonary fibrosis, silicosis, is one of the most common types of pneumoconiosis, and its pathogenesis is still unclear. The proliferation and transdifferentiation of fibroblasts are considered to be the key link leading to pulmonary fibrosis. Type II alveolar epithelial cells can be transformed into lung fibroblasts through epithelial-mesenchymal transition (EMT) to promote lung fibrosis. Involved in the EMT process of a variety of cancers, lncRNA UCA1 (UCA1) has been shown to competitively adsorb miR-204-5p, and play an effect on the downstream target gene E-box binding zinc finger protein 1 (ZEB1), thereby promoting EMT to facilitate the invasion and migration of cancer cells. This is an important potential intervention target that affects the process of EMT, but it has not been reported in the study of EMT related to silicosis. Therefore, this study established a SiO2 dust-treated mouse silicosis model and an in vitro EMT model of A549 cells to observe the changes and effects of UCA1 and miR-204-5p, and intervene on the two respectively. The results showed that the EMT process existed in the aforementioned models, while UCA1 was upregulated in the in vitro model. Double luciferase reporter assay demonstrated the targeted binding of UCA1 and miR-204-5p. Silencing UCA1 can up-regulate the expression of miR-204-5p and reduce the level of ZEB1, thus inhibiting EMT process, while intervention of miR-204-5p can change the level of ZEB1 and regulate EMT. Therefore, UCA1 may release its target gene ZEB1 through competitive adsorption of miR-204-5p to regulate EMT process.


Assuntos
MicroRNAs , Fibrose Pulmonar , RNA Longo não Codificante , Silicose , Células A549 , Adsorção , Animais , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dióxido de Silício/metabolismo , Silicose/genética , Silicose/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
12.
J Clin Lab Anal ; 36(6): e24392, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35441408

RESUMO

BACKGROUND: Sepsis is a highly life-threatening disease. Long non-coding RNA urothelial carcinoma associated 1 (lncRNA UCA1) participates in the processes of inflammation and organ injury in several diseases, whereas its role in sepsis patients is still unclear. The aim was to explore the clinical value of lncRNA UCA1 in sepsis patients. METHODS: One hundred seventy-four sepsis patients and 100 age and gender-matched controls were enrolled. LncRNA UCA1 in peripheral blood mononuclear cell samples was examined, and the level of inflammatory cytokines in serum samples was assessed. RESULTS: LncRNA UCA1 was highly expressed in sepsis patients compared with controls. LncRNA UCA1 was positively correlated with tumor necrosis factor-α, interleukin (IL)-6, IL-17, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in sepsis patients, while it was not correlated with these inflammatory cytokines in controls. lncRNA UCA1 upregulation was related to raised APACHE II score and SOFA score in sepsis patients. Moreover, lncRNA UCA1 was increased in sepsis deaths compared with sepsis survivors and was independently correlated with increased 28-day sepsis mortality risk. Further receiver operating characteristic curves presented that lncRNA UCA1 had a good value to predict 28-motality risk, while its combination with other independent factors (including age, history of chronic kidney disease, G+ bacterial infection, Fungus infection, C-reactive protein, and APACHE II score) exerted a great predictive value for 28-day mortality risk. CONCLUSION: LncRNA UCA1 is upregulated and correlates with multiple pro-inflammatory cytokines, terrible disease severity, and poor prognosis in sepsis patients.


Assuntos
RNA Longo não Codificante , Sepse , Estudos de Casos e Controles , Citocinas/sangue , Citocinas/imunologia , Humanos , Interleucina-6 , Leucócitos Mononucleares/patologia , Prognóstico , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , Sepse/sangue , Sepse/genética , Sepse/imunologia , Regulação para Cima
13.
Immunopharmacol Immunotoxicol ; 44(4): 492-499, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35332839

RESUMO

BACKGROUND: Doxorubicin (DOX) resistance remains a major challenge for adriamycin-based treatment of breast cancer (BC). Transforming growth factor ß (TGF-ß) has been reported to contribute to drug resistance. Although the role of long noncoding RNAs (LncRNAs) in cancer progression has been widely studied, its effect on TGF-ß-induced resistance remains limited. This study aimed to investigate the role of LncRNA on the regulation of TGF-ß-induced drug resistance. METHODS: Cell counting kit-8 (CCK-8) and an EdU assay were used to evaluate cell viability and proliferation. The level of LncRNA mRNA expression in BC tissues and cells was examined by quantitative real-time PCR. Changes in epithelial-mesenchymal transition (EMT) and cell apoptosis were quantified by Western blot and immunofluorescence. RESULTS: TGF-ß induced EMT and promoted DOX resistance. LncRNA urothelial carcinoma-associated 1(lncRNA UCA1) associated with TGF-ß was upregulated in BC cells and tissues. LncRNA UCA1 silencing enhanced sensitivity to DOX decreased cellular proliferation and increased apoptosis in BC cells. The effect of TGF-ß on EMT and DOX resistance disappeared following a lncRNA UCA1 knockdown. CONCLUSIONS: These findings suggest that lncRNA-UCA1, a mediator of TGF-ß signaling, could predispose BC patients to EMT and DOX resistance.


Assuntos
Neoplasias da Mama , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , RNA Longo não Codificante , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Doxorrubicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
14.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232884

RESUMO

Endometriosis is a disease of complex etiology. Hormonal, immunological, and environmental factors are involved in its formation. In recent years, special attention has been paid to genetic mechanisms that can have a significant impact on the increased incidence of endometriosis. The study aimed to analyze the expression of four long non-coding RNA (lncRNA) genes, UCA1, MALAT1, TC0101441, and H19, in the context of the risk of developing endometriosis. The material for genetic testing for the expression of lncRNA genes were tissue slices embedded in paraffin blocks from patients with endometriosis (n = 100) and the control group (n = 100). Gene expression was determined by the RT-PCR technique. The expression of the H19 gene in endometriosis patients was statistically significantly lower than in the control group. A statistically significant association was found between H19 gene expression in relation to The Revised American Society for Reproductive Medicine classification of endometriosis (rASRM) in the group of patients with endometriosis. Research suggests that H19 expression plays an important role in the pathogenesis of endometriosis.


Assuntos
Endometriose , RNA Longo não Codificante/metabolismo , Endometriose/metabolismo , Endometriose/patologia , Feminino , Humanos , Parafina
15.
Cancer Immunol Immunother ; 70(8): 2235-2245, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33486611

RESUMO

BACKGROUND: LncRNAs play an important role in the regulation of the killing effect of cytotoxic CD8 + T cells in various cancers. However, the role and underlying mechanisms of UCA1 in the killing effect of cytotoxic CD8 + T cells in anaplastic thyroid carcinoma (ATC) are not clear. METHODS: UCA1, miR-148a, and PD-L1 expression were detected by quantitative real-time PCR and/or Western blot. The ratio of PD-L1+ATC cells/ATC cells was determined using flow cytometry. The ability of CD8 + T cells to kill target ATC cells was detected by Chromium-51 (51Cr) release assay. The targeted relationship between UCA1 and miR-148a was confirmed by dual-luciferase reporter gene assay. RESULTS: UCA1 and PD-L1 expression levels were elevated in ATC tissues and cells. Silencing UCA1 and PD-L1 enhanced the killing effect of cytotoxic CD8 + T cells on ATC cells. UCA1 negatively regulated the expression of miR-148a, and miR-148a targeted PD-L1 to down-regulate its expression. Besides, we found that UCA1 attenuated the killing effect of cytotoxic CD8 + T cells and reduced cytokine secretion through PD-L1 and miR-148a. Finally, silencing UCA1 or PD-L1 in ATC cells restored the suppression of the killing effect of CD8 + T cells in vivo. CONCLUSION: UCA1 attenuated the killing effect of cytotoxic CD8 + T cells on ATC cells through the miR-148a/PD-L1 pathway.


Assuntos
Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , MicroRNAs/imunologia , RNA Longo não Codificante/imunologia , Carcinoma Anaplásico da Tireoide/imunologia , Neoplasias da Glândula Tireoide/imunologia , Animais , Apoptose/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Proliferação de Células/fisiologia , Regulação para Baixo/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Transdução de Sinais/imunologia
16.
J Transl Med ; 19(1): 229, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34053467

RESUMO

BACKGROUND: There is growing evidence discussing the role of long non-coding RNAs (lncRNAs) in cervical cancer (CC). We performed this study to explore the impact of exosomal lncRNA urothelial cancer-associated 1 (UCA1) in CC stem cells by sponging microRNA-122-5p (miR-122-5p) and regulating SOX2 expression. METHODS: CC stem cells (CD133+CaSki) and exosomes were extracted and identified. The synthesized UCA1- and miR-122-5p-related sequences were transfected into CaSki cells, CaSki cells-derived exosomes were extracted and then co-cultured with CD133+CaSki cells. The functional roles of UCA1 and miR-122-5p in self-renewal and differentiation ability of CC stem cells were determined using ectopic expression, knockdown/depletion and reporter assay experiments. An in vivo experiment was performed to verify the in vitro results. RESULTS: Up-regulated UCA1 and SOX2 and down-regulated miR-122-5p were found in CaSki-Exo. Exosomes promoted invasion, migration, proliferation and restrained apoptosis of CD133+CaSki cells. Silencing UCA1 or up-regulating miR-122-5p degraded SOX2 expression, and reduced invasion, migration and proliferation of CD133+CaSki cells while advanced apoptosis and suppressed the tumor volume and weight in nude mice. CONCLUSION: Our study provides evidence that CaSki-Exo can promote the self-renewal and differentiation ability of CC stem cells while silencing UCA1 or up-regulating miR-122-5p restrains self-renewal and differentiation of CC stem cells.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Animais , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Feminino , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/genética , Neoplasias do Colo do Útero/genética
17.
IUBMB Life ; 73(2): 463-473, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33368965

RESUMO

Neonatal pneumonia is a high neonatal mortality disease. The current research was designed to elucidate the modulatory function and feasible molecular mechanism of UCA1 in LPS-induced injury in pneumonia. Herein, LPS was applied to induce WI-38 cell inflammatory damage. We displayed that UCA1 was elevated in LPS-injured WI-38 cells. In the functional aspect, intervention of UCA1 evidently aggrandized cell viability in LPS-triggered WI-38 cells. In the meanwhile, elimination of UCA1 distinctly assuaged cell apoptosis concomitant with declined levels of proapoptotic proteins Bax and C-caspase-3, and ascended the expression of antiapoptotic protein Bcl-2. Subsequently, disruption of UCA1 manifestly restrained inflammatory damage as characterized by declination of multiple pro-inflammatory factors IL-1ß, IL-6, and TNF-α in WI-38 cells under LPS circumstance. More importantly, we predicted and verified that UCA1 functioned as a ceRNA by efficaciously binding to miR-499b-5p thereby inversely adjusting miR-499b-5p expression. Interesting, TLR4 was identified as direct target of miR-499b-5p, and positively regulated by UCA1 through sponging miR-499b-5p. Mechanistically, absence of miR-499b-5p or restoration of TLR4 impeded the beneficial effects of UCA1 ablation on LPS-stimulated apoptosis and inflammatory response. Collectively, these observations illuminated that UCA1 inhibition protected WI-38 cells against LPS-managed inflammatory injury and apoptosis process via miR-499b-5p/TLR4 crosstalk, which ultimately influencing the development of pneumonia.


Assuntos
Fibroblastos/efeitos dos fármacos , Inflamação/prevenção & controle , Lipopolissacarídeos/efeitos adversos , MicroRNAs/antagonistas & inibidores , RNA Longo não Codificante/genética , Receptor 4 Toll-Like/antagonistas & inibidores , Apoptose , Proliferação de Células , Células Cultivadas , Fibroblastos/imunologia , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , MicroRNAs/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
18.
Cancer Cell Int ; 21(1): 505, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544452

RESUMO

AIM: This study aimed to explore the mechanism of LncRNA urothelial carcinoma-associated 1 (UCA1) promoting cisplatin resistance in lung adenocarcinoma (LUAD). METHOD: The UCA1 expression level in LUAD cell lines was detected by reverse transcription­quantitative polymerase chain reaction (RT­qPCR). We overexpressed UCA1 in A549 cells and downregulated UCA1 in A549/DDP cells by the lentivirus­mediated technique. Subsequently, in vitro, and in vivo functional experiments were performed to investigate the functional roles of UCA1 in the growth and metastasis of LUAD cell lines. Furthermore, RNA pulldown, mass spectrometry, and RNA immunoprecipitation technique were performed to analyze various downstream target factors regulated by UCA1. RESULTS: The results revealed a higher UCA1 expression level in A549/DDP cells and LUAD tissues than in A549 cells and adjacent cancer tissues. UCA1 expression was significantly associated with distant metastasis, clinical stage, and survival time of patients with LUAD. UCA1 overexpression significantly increased the proliferation, invasion, clone formation, and cisplatin resistance ability and enhanced the expression levels of proliferating cell nuclear antigen and excision repair cross-complementing gene 1 in A549 cells. However, these trends were mostly reversed after the knockdown of UCA1 in A549/DDP cells. Tumorigenic assays in nude mice showed that UCA1 knockdown significantly inhibited tumor growth and reduced cisplatin resistance. Enolase 1 was the RNA-binding protein (RBP) of UCA1. CONCLUSION: Based on the results, we concluded that UCA1 promoted LUAD progression and cisplatin resistance and hence could be a potential diagnostic marker and therapeutic target in patients with LUAD.

19.
Cancer Cell Int ; 21(1): 616, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809621

RESUMO

BACKGROUND: UCA1 is frequently upregulated in a variety of cancers, including CRC, and it can play an oncogenic role by various mechanisms. However, how UCA1 is regulated in cancer is largely unknown. In this study, we aimed to determine whether RNA methylation at N6-methyladenosine (m6A) can impact UCA1 expression in colorectal cancer (CRC). METHODS: qRT-PCR was performed to detect the level of UCA1 and IGF2BP2 in CRC samples. CRISPR/Cas9 was employed to knockout (KO) UCA1, METTL3 and WTAP in DLD-1 and HCT-116 cells, while rescue experiments were carried out to re-express METTL3 and WTAP in KO cells. Immunoprecipitation using m6A antibody was performed to determine the m6A modification of UCA1. In vivo pulldown assays using S1m tagging combined with site-direct mutagenesis was carried out to confirm the recognition of m6A-modified UCA1 by IGF2BP2. Cell viability was measured by MTT and colony formation assays. The expression of UCA1 and IGF2BP2 in TCGA CRC database was obtained from GEPIA ( http://gepia.cancer-pku.cn ). RESULTS: Our results revealed that IGF2BP2 serves as a reader for m6A modified UCA1 and that adenosine at 1038 of UCA1 is critical to the recognition by IGF2BP2. Importantly, we showed that m6A writers, METTL3 and WTAP positively regulate UCA1 expression. Mechanically, IGF2BP2 increases the stability of m6A-modified UCA1. Clinically, IGF2BP2 is upregulated in CRC tissues compared with normal tissues. CONCLUSION: These results suggest that m6A modification is an important factor contributing to upregulation of UCA1 in CRC tissues.

20.
BMC Cancer ; 21(1): 104, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514344

RESUMO

BACKGROUND: LncRNA WT1-AS inhibits gastric cancer, while its role in other cancers is unknown. We investigated the role of WT1-AS in non-small cell lung cancer (NSCLC). METHODS: Sixty-six NSCLC patients (40 males and 26 females; 36 to 68 years old; mean age 52.7 ± 6.4 years old) were selected from the 178 NSCLC patients operated on for lung cancer between 2010 and 2013. RT-qPCR was used to analyze the expression of lncRNA. Overexpression experiments were performed to assess interactions between lncRNAs. CCK-8 assay was carried to evaluate the roles of WT1-AS and UCA1 in regulating cell proliferation. Cell invasion and migration assays were performed to assess the roles of WT1-AS and UCA1 in regulating cell invasion and migration. Western-blot was performed to illustrate the effect of WT1-AS and UCA1 in EMT. RESULTS: WT1-AS was downregulated in NSCLC and was correlated with poor survival. The expression of WT1-AS in NSCLC was not correlated with clinical stages. LncRNA UCA1 was upregulated in cancer tissues and inversely correlated with WT1-AS. Overexpression of UCA1 did not affect WT1-AS, while overexpression of WT1-AS led to inhibited expression of UCA1. Overexpression of UCA1 resulted in increased proliferation, EMT, migration and invasion of NSCLC cells, while overexpression of WT1-AS showed opposite effects. In addition, overexpression of UCA1 inhibited the role of overexpression of WT1-AS. CONCLUSIONS: Therefore, overexpression of WT1-AS may inhibit the cell proliferation and EMT to decrease cell migration and invasion of NSCLC cells by downregulating UCA1.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/mortalidade , RNA Longo não Codificante/genética , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Proliferação de Células , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA