Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell Mol Life Sci ; 81(1): 71, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300320

RESUMO

Hexosylceramides (HexCer) are implicated in the infection process of various pathogens. However, the molecular and cellular functions of HexCer in infectious cycles are poorly understood. Investigating the enveloped virus Uukuniemi (UUKV), a bunyavirus of the Phenuiviridae family, we performed a lipidomic analysis with mass spectrometry and determined the lipidome of both infected cells and derived virions. We found that UUKV alters the processing of HexCer to glycosphingolipids (GSL) in infected cells. The infection resulted in the overexpression of glucosylceramide (GlcCer) synthase (UGCG) and the specific accumulation of GlcCer and its subsequent incorporation into viral progeny. UUKV and several pathogenic bunyaviruses relied on GlcCer in the viral envelope for binding to various host cell types. Overall, our results indicate that GlcCer is a structural determinant of virions crucial for bunyavirus infectivity. This study also highlights the importance of glycolipids on virions in facilitating interactions with host cell receptors and infectious entry of enveloped viruses.


Assuntos
Orthobunyavirus , Glucosilceramidas , Ligação Viral , Lipidômica , Espectrometria de Massas
2.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542193

RESUMO

Due to the high comorbidity of Parkinson's disease (PD) with major depressive disorder (MDD) and the involvement of sphingolipids in both conditions, we investigated the peripheral expression levels of three primarily PD-associated genes: α-synuclein (SNCA), lysosomal enzyme ß-glucocerebrosidase (GBA1), and UDP-glucose ceramide glucosyltransferase (UGCG) in a sex-balanced MDD cohort. Normalized gene expression was determined by quantitative PCR in patients suffering from MDD (unmedicated n = 63, medicated n = 66) and controls (remitted MDD n = 39, healthy subjects n = 61). We observed that expression levels of SNCA (p = 0.036), GBA1 (p = 0.014), and UGCG (p = 0.0002) were higher in currently depressed patients compared to controls and remitted patients, and expression of GBA1 and UGCG decreased in medicated patients during three weeks of therapy. Additionally, in subgroups, expression was positively correlated with the severity of depression and anxiety. Furthermore, we identified correlations between the gene expression levels and PD-related laboratory parameters. Our findings suggest that SNCA, GBA1, and UGCG analysis could be instrumental in the search for biomarkers of MDD and in understanding the overlapping pathological mechanisms underlying neuro-psychiatric diseases.


Assuntos
Transtorno Depressivo Maior , Glucosiltransferases , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Depressão , Transtorno Depressivo Maior/genética , Expressão Gênica , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Mutação , Doença de Parkinson/metabolismo , Regulação para Cima
3.
Acta Pharmacol Sin ; 44(6): 1191-1205, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36627345

RESUMO

UDP-glucose ceramide glucosyltransferase (UGCG) is the first key enzyme in glycosphingolipid (GSL) metabolism that produces glucosylceramide (GlcCer). Increased UGCG synthesis is associated with cell proliferation, invasion and multidrug resistance in human cancers. In this study we investigated the role of UGCG in the pathogenesis of hepatic fibrosis. We first found that UGCG was over-expressed in fibrotic livers and activated hepatic stellate cells (HSCs). In human HSC-LX2 cells, inhibition of UGCG with PDMP or knockdown of UGCG suppressed the expression of the biomarkers of HSC activation (α-SMA and collagen I). Furthermore, pretreatment with PDMP (40 µM) impaired lysosomal homeostasis and blocked the process of autophagy, leading to activation of retinoic acid signaling pathway and accumulation of lipid droplets. After exploring the structure and key catalytic residues of UGCG in the activation of HSCs, we conducted virtual screening, molecular interaction and molecular docking experiments, and demonstrated salvianolic acid B (SAB) from the traditional Chinese medicine Salvia miltiorrhiza as an UGCG inhibitor with an IC50 value of 159 µM. In CCl4-induced mouse liver fibrosis, intraperitoneal administration of SAB (30 mg · kg-1 · d-1, for 4 weeks) significantly alleviated hepatic fibrogenesis by inhibiting the activation of HSCs and collagen deposition. In addition, SAB displayed better anti-inflammatory effects in CCl4-induced liver fibrosis. These results suggest that UGCG may represent a therapeutic target for liver fibrosis; SAB could act as an inhibitor of UGCG, which is expected to be a candidate drug for the treatment of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Humanos , Animais , Simulação de Acoplamento Molecular , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado/metabolismo , Colágeno Tipo I/metabolismo
4.
Cell Mol Biol Lett ; 28(1): 71, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658291

RESUMO

Mechanical pressure overload and other stimuli often contribute to heart hypertrophy, a significant factor in the induction of heart failure. The UDP-glucose ceramide glycosyltransferase (UGCG) enzyme plays a crucial role in the metabolism of sphingolipids through the production of glucosylceramide. However, its role in heart hypertrophy remains unknown. In this study, UGCG was induced in response to pressure overload in vivo and phenylephrine stimulation in vitro. Additionally, UGCG downregulation ameliorated cardiomyocyte hypertrophy, improved cardiomyocyte mitochondrial oxidative stress, and reduced the ERK signaling pathway. Conversely, UGCG overexpression in cardiomyocytes promoted heart hypertrophy development, aggravated mitochondrial oxidative stress, and stimulated ERK signaling. Furthermore, the interaction between beta-1,4-galactosyltransferase 5 (B4GalT5), which catalyses the synthesis of lactosylceramide, and UGCG was identified, which also functions as a synergistic molecule of UGCG. Notably, limiting the expression of B4GalT5 impaired the capacity of UGCG to promote myocardial hypertrophy, suggesting that B4GalT5 acts as an intermediary for UGCG. Overall, this study highlights the potential of UGCG as a modulator of heart hypertrophy, rendering it a potential target for combating heart hypertrophy.


Assuntos
Ceramidas , Glicosiltransferases , Humanos , Transdução de Sinais , Cardiomegalia , Estresse Oxidativo
5.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562868

RESUMO

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer. Low numbers of HCC patients being suitable for liver resection or transplantation and multidrug resistance development during pharmacotherapy leads to high death rates for HCC patients. Understanding the molecular mechanisms of HCC etiology may contribute to the development of novel therapeutic strategies for prevention and treatment of HCC. UDP-glucose ceramide glycosyltransferase (UGCG), a key enzyme in glycosphingolipid metabolism, generates glucosylceramide (GlcCer), which is the precursor for all glycosphingolipids (GSLs). Since UGCG gene expression is altered in 0.8% of HCC tumors, GSLs may play a role in cellular processes in liver cancer cells. Here, we discuss the current literature about GSLs and their abundance in normal liver cells, Gaucher disease and HCC. Furthermore, we review the involvement of UGCG/GlcCer in multidrug resistance development, globosides as a potential prognostic marker for HCC, gangliosides as a potential liver cancer stem cell marker, and the role of sulfatides in tumor metastasis. Only a limited number of molecular mechanisms executed by GSLs in HCC are known, which we summarize here briefly. Overall, the role GSLs play in HCC progression and their ability to serve as biomarkers or prognostic indicators for HCC, requires further investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Resistência a Múltiplos Medicamentos , Glucosilceramidas/metabolismo , Glucosiltransferases/metabolismo , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/metabolismo , Humanos , Neoplasias Hepáticas/genética
6.
BMC Cancer ; 18(1): 153, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409484

RESUMO

The UDP-glucose ceramide glycosyltransferase (UGCG) is a key enzyme in the sphingolipid metabolism by generating glucosylceramide (GlcCer), the precursor for all glycosphingolipids (GSL), which are essential for proper cell function. Interestingly, the UGCG is also overexpressed in several cancer types and correlates with multidrug resistance protein 1 (MDR1) gene expression. This membrane protein is responsible for efflux of toxic substances and protects cancer cells from cell damage through chemotherapeutic agents. Studies showed a connection between UGCG and MDR1 overexpression and multidrug resistance development, but the precise underlying mechanisms are unknown. Here, we give an overview about the UGCG and its connection to MDR1 in multidrug resistant cells. Furthermore, we focus on UGCG transcriptional regulation, the impact of UGCG on cellular signaling pathways and the effect of UGCG and MDR1 on the lipid composition of membranes and how this could influence multidrug resistance development. To our knowledge, this is the first review presenting an overview about UGCG with focus on the relationship to MDR1 in the process of multidrug resistance development.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glucosiltransferases/genética , Neoplasias/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Glucosiltransferases/metabolismo , Humanos , Modelos Genéticos , Neoplasias/metabolismo , Neoplasias/patologia
7.
Glycobiology ; 26(2): 166-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26405105

RESUMO

Statins, which specifically inhibit HMG Co-A reductase, the rate-limiting step of cholesterol biosynthesis, are widely prescribed to reduce serum cholesterol and cardiac risk, but many other effects are seen. We now show an effect of these drugs to induce profound changes in the step-wise synthesis of glycosphingolipids (GSLs) in the Golgi. Glucosylceramide (GlcCer) was increased several-fold in all cell lines tested, demonstrating a widespread effect. Additionally, de novo or elevated lactotriaosylceramide (Lc3Cer; GlcNAcß1-3Galß1-4GlcCer) synthesis was observed in 70%. Western blot showed that GlcCer synthase (GCS) was elevated by statins, and GCS and Lc3Cer synthase (Lc3S) activities were increased; however, transcript was elevated for Lc3S only. Supplementation with the isoprenoid precursor, geranylgeranyl pyrophosphate (GGPP), a downstream product of HMG Co-A reductase, reversed statin-induced glycosyltransferase and GSL elevation. The Rab geranylgeranyl transferase inhibitor 3-PEHPC, but not specific inhibitors of farnesyl transferase, or geranylgeranyl transferase I, was sufficient to replicate statin-induced GlcCer and Lc3Cer synthesis, supporting a Rab prenylation-dependent mechanism. While total cholesterol was unaffected, the trans-Golgi network (TGN) cholesterol pool was dissipated and medial Golgi GCS partially relocated by statins. GSL-dependent vesicular retrograde transport of Verotoxin and cholera toxin to the Golgi/endoplasmic reticulum were blocked after statin or 3-PEHPC treatment, suggesting aberrant, prenylation-dependent vesicular traffic as a basis of glycosyltransferase increase and GSL remodeling. These in vitro studies indicate a previously unreported link between Rab prenylation and regulation of GCS activity and GlcCer metabolism.


Assuntos
Anticolesterolemiantes/farmacologia , Ceramidas/metabolismo , Prenilação de Proteína/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/metabolismo , Geraniltranstransferase/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Células Jurkat , Células MCF-7 , Transporte Proteico
8.
Biochim Biophys Acta ; 1831(9): 1475-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23770033

RESUMO

Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids.


Assuntos
Glucosídeos/metabolismo , Glucosilceramidas/metabolismo , Glicerofosfolipídeos/metabolismo , Glicolipídeos/metabolismo , Animais , Humanos , Microdomínios da Membrana
9.
Hum Mutat ; 34(10): 1396-403, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913449

RESUMO

The extreme phenotypic variability of patients with Gaucher disease (GD) is not completely explained by glucocerebrosidase gene mutations. It has been proposed that genetic modifiers might influence GD phenotype. We examined seven polymorphisms of the glucosylceramide synthase gene (UGCG) and their correlation with severity of GD. Five UGCG variants were significantly associated with disease severity, according to the DS3 scoring system: c.-295C>T, c.-232_-241ins10, c.98+50A>G, c.98+68A>T, and c.861A>G. Heterozygous [N370S]+[L444P] patients with c.[-232_-241ins10;98+50G] haplotype had a significantly lower DS3 score in relation to patients carrying only one of these polymorphisms. Electrophoretic mobility shift assay analysis showed an increased nuclear protein binding ability for the G allele at the cDNA position c.98+50, as well as an altered pattern for the c.-232_-241ins10 allele. The promoter activity of the haplotypes decreased significantly with respect to wild type activity in HepG2 and COS-7 cells (-14% and -16% for the c.[-232_-241ins10;98+50A] haplotype, -44% and -25% for c.[-222nonins;98+50G] haplotypes, and -64% and -75% for c.[-232_-241ins10;98+50G] haplotype, respectively). These data indicate that the c.-232_-241ins10 and c.98+50A>G variants are modifying factors of GD severity, which can partly explain the variability in severity of the disease.


Assuntos
Doença de Gaucher/genética , Estudos de Associação Genética , Glucosiltransferases/genética , Mutação , Adolescente , Adulto , Idoso , Alelos , Animais , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Feminino , Doença de Gaucher/diagnóstico , Doença de Gaucher/terapia , Expressão Gênica , Genes Reporter , Genótipo , Células Hep G2 , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Regiões Promotoras Genéticas , Adulto Jovem
11.
Comb Chem High Throughput Screen ; 26(11): 2003-2012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36321232

RESUMO

BACKGROUND: Sphingolipid metabolism plays important roles in maintaining cell growth and signal transduction. However, this pathway has not been investigated in keloid, a disease characterized by the excessive proliferation of fibroblasts. METHODS: Based on the expression profiles of three datasets, the differentially expressed genes (DEGs) were explored between keloid fibroblasts and normal fibroblasts. Metabolism-related genes were obtained from a previous study. Then, enrichment analysis and protein-protein interaction (PPI) network analysis were performed for genes. Differences in metabolism-related pathways between keloid fibroblasts and normal fibroblasts were analyzed by the gene set variation analysis (GSVA). Quantitative PCR was used to confirm the expression of key genes in keloid fibroblast. RESULTS: A total of 42 up-regulated co-DEGs and 77 down-regulated co-DEGs were revealed based on three datasets, and were involved in extracellular matrix structural constituent, collagencontaining extracellular matrix and sphingolipid metabolism pathway. A total of 15 metabolism- DEGs were screened, including serine palmitoyltransferase long chain base subunit (SPTLC) 3, UDP-glucose ceramide glucosyltransferase (UGCG) and sphingomyelin synthase 2 (SGMS2). All these three genes were enriched in the sphingolipid pathway. GSVA showed that the biosynthesis of glycosphingolipids (GSLs) in keloid fibroblasts was lower than that in normal fibroblasts. Quantitative PCR suggested SPTLC3, UGCG and SGMS2 were regulated in keloid fibroblasts. CONCLUSION: Sphingolipids metabolism pathway might take part in the disease progression of keloid by regulating keloid fibroblasts. SPTLC3, UGCG and SGMS2 might be key targets to investigate the underlying mechanism.


Assuntos
Queloide , Humanos , Queloide/genética , Queloide/metabolismo , Queloide/patologia , Transdução de Sinais/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Esfingolipídeos/metabolismo , Biomarcadores/metabolismo
12.
J Invest Dermatol ; 143(10): 1964-1972.e4, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37004877

RESUMO

Ligand activation of the aryl hydrocarbon receptor (AHR) accelerates keratinocyte differentiation and the formation of the epidermal permeability barrier. Several classes of lipids, including ceramides, are critical to the epidermal permeability barrier. In normal human epidermal keratinocytes, the AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, increased RNA levels of ceramide metabolism and transport genes: uridine diphosphate glucose ceramide glucosyltransferase (UGCG), ABCA12, GBA1, and SMPD1. Levels of abundant skin ceramides were also increased by 2,3,7,8-tetrachlorodibenzo-p-dioxin. These included the metabolites synthesized by UGCG, glucosylceramides, and acyl glucosylceramides. Chromatin immunoprecipitation-sequence analysis and luciferase reporter assays identified UGCG as a direct AHR target. The AHR antagonist, GNF351, inhibited the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated RNA and transcriptional increases. Tapinarof, an AHR ligand approved for the treatment of psoriasis, increased UGCG RNA, protein, and its lipid metabolites hexosylceramides as well as increased the RNA expression of ABCA12, GBA1, and SMPD1. In Ahr-null mice, Ugcg RNA and hexosylceramides were lower than those in the wild type. These results indicate that the AHR regulates the expression of UGCG, a ceramide-metabolizing enzyme required for ceramide trafficking, keratinocyte differentiation, and epidermal permeability barrier formation.


Assuntos
Glucosilceramidas , Dibenzodioxinas Policloradas , Animais , Camundongos , Humanos , Glucosilceramidas/metabolismo , Uridina Difosfato Glucose , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , RNA
13.
Aging (Albany NY) ; 12(20): 20332-20349, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33080569

RESUMO

Breast cancer patients at the same stage may show different clinical prognoses or different therapeutic effects of systemic therapy. Differentially expressed genes of breast cancer were identified from GSE42568. Through survival, receiver operating characteristic (ROC) curve, random forest, GSVA and a Cox regression model analyses, genes were identified that could be associated with survival time in breast cancer. The molecular mechanism was identified by enrichment, GSEA, methylation and SNV analyses. Then, the expression of a key gene was verified by the TCGA dataset and RT-qPCR, Western blot, and immunohistochemistry. We identified 784 genes related to the 5-year overall survival time of breast cancer. Through ROC curve and random forest analysis, 10 prognostic genes were screened. These were integrated into a complex by GSVA, and high expression of the complex significantly promoted the recurrence-free survival of patients. In addition, key genes were related to immune and metabolic-related functions. Importantly, we identified methylation of MEX3A and TBC1D 9 and mutations events. Finally, the expression of UGCG was verified by the TCGA dataset and by experimental methods in our own samples. These results indicate that 10 genes may be potential biomarkers and therapeutic targets for long-term survival in breast cancer, especially UGCG.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Sobreviventes de Câncer , Perfilação da Expressão Gênica , Transcriptoma , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Proteínas de Ligação ao Cálcio/genética , Metilação de DNA , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glucosiltransferases/genética , Humanos , Proteínas de Membrana/genética , Nomogramas , Fosfoproteínas/genética , Valor Preditivo dos Testes , Proteínas de Ligação a RNA/genética , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
14.
Prog Lipid Res ; 79: 101050, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32592726

RESUMO

A growing number of studies describe a connection between glycosphingolipids (GSLs) and glutamine metabolism, glucose metabolism and mitochondrial dysfunction in cancer cells. Since deregulated cell energy metabolism is one of cancer cells hallmarks, investigating this connection is an important step in the development of anti-cancer therapies. GSL species are often aberrantly regulated in human cancers. They cluster in signaling platforms in the plasma membrane and organelle membranes in so called glycosphingolipid enriched microdomains (GEMs), thereby regulating cell signaling pathways. The most important glutamine transporter for epithelial cells, alanine-serine-cysteine transporter 2 (ASCT2) locates in GEMs and is regulated by GEM composition. The accumulation of glucosylceramide and lactosylceramide in mitochondria associated ER membranes (MAMs) leads to increased oxidative phosphorylation. This increases mitochondrial reactive oxygen species (ROS) levels and influences mitochondrial dynamics. Here, we review current knowledge about deregulated GSL species in cancer, GSL influence on glutamine and glucose metabolism. In addition, the role of GSLs in MAMs, oxidative phosphorylation (OXPHOS) and mitochondrial dynamics with a special focus on mechanistic target of rapamycin (mTOR) signaling is discussed. mTOR seems to play a pivotal role in the connection between GSLs and glutamine metabolism as well as in mitochondrial signaling.


Assuntos
Metabolismo Energético , Glicoesfingolipídeos/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Neoplasias/patologia
15.
SLAS Discov ; 25(6): 605-617, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32441189

RESUMO

Modified messenger RNAs (mRNAs) hold great potential as therapeutics by using the body's own processes for protein production. However, a key challenge is efficient delivery of therapeutic mRNA to the cell cytosol and productive protein translation. Lipid nanoparticles (LNPs) are the most clinically advanced system for nucleic acid delivery; however, a relatively narrow therapeutic index makes them unsuitable for many therapeutic applications. A key obstacle to the development of more potent LNPs is a limited mechanistic understanding of the interaction of LNPs with cells. To address this gap, we performed an arrayed CRISPR screen to identify novel pathways important for the functional delivery of MC3 lipid-based LNP encapsulated mRNA (LNP-mRNA). Here, we have developed and validated a robust, high-throughput screening-friendly phenotypic assay to identify novel targets that modulate productive LNP-mRNA delivery. We screened the druggable genome (7795 genes) and validated 44 genes that either increased (37 genes) or inhibited (14 genes) the productive delivery of LNP-mRNA. Many of these genes clustered into families involved with host cell transcription, protein ubiquitination, and intracellular trafficking. We show that both UDP-glucose ceramide glucosyltransferase and V-type proton ATPase can significantly modulate the productive delivery of LNP-mRNA, increasing and decreasing, respectively, with both genetic perturbation and by small-molecule inhibition. Taken together, these findings shed new light into the molecular machinery regulating the delivery of LNPs into cells and improve our mechanistic understanding of the cellular processes modulating the interaction of LNPs with cells.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Terapia Genética/tendências , Nanopartículas/química , RNA Mensageiro/genética , Técnicas de Transferência de Genes/tendências , Genoma Humano/genética , Ensaios de Triagem em Larga Escala/métodos , Humanos , Lipídeos/química , Lipídeos/genética , Lipídeos/uso terapêutico , Nanopartículas/uso terapêutico , RNA Mensageiro/uso terapêutico
16.
Artigo em Inglês | MEDLINE | ID: mdl-32474112

RESUMO

Except for epidermis and liver, little is known about endogenous expression of 1-O-acylceramides (1-OACs) in mammalian tissue. Therefore, we screened several organs (brain, lung, liver, spleen, lymph nodes, heart, kidney, thymus, small intestine, and colon) from mice for the presence of 1-OACs by LC-MS2. In most organs, low levels of about 0.25-1.3 pmol 1-OACs/mg wet weight were recorded. Higher levels were detected in liver, small and large intestines, with about 4-13 pmol 1-OACs/mg wet weight. 1-OACs were esterified mainly with palmitic, stearic, or oleic acids. Esterification with saturated very long-chain fatty acids, as in epidermis, was not observed. Western-type diet induced 3-fold increased 1-OAC levels in mice livers while ceramides were unaltered. In a mouse model of Farber disease with a decrease of acid ceramidase activity, we observed a strong, up to 50-fold increase of 1-OACs in lung, thymus, and spleen. In contrast, 1-OAC levels were reduced 0.54-fold in liver. Only in lung 1-OAC levels correlated to changes in ceramide levels - indicating tissue-specific mechanisms of regulation. Glucosylceramide synthase deficiency in liver did not cause changes in 1-OAC or ceramide levels, whereas increased ceramide levels in glucosylceramide synthase-deficient small intestine caused an increase in 1-OAC levels. Deficiency of Dgat1 in mice resulted in a reduction of 1-OACs to 30% in colon, but not in small intestine and liver, going along with constant free ceramides levels. From these data, we conclude that Dgat1 as well as lysosomal lipid metabolism contribute in vivo to homeostatic 1-OAC levels in an organ-specific manner.


Assuntos
Ceramidas/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Lipogranulomatose de Farber/metabolismo , Metabolismo dos Lipídeos , Animais , Encéfalo/metabolismo , Colo/metabolismo , Intestino Delgado/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Linfonodos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Baço/metabolismo , Timo/metabolismo
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(8): 1157-1167, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31051284

RESUMO

BACKGROUND: Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis. RESULTS: Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity. CONCLUSION: Glucosylceramide biosynthesis pathway is important for endogenous lipid antigen activation of iNKT cells in adipocytes. SIGNIFICANCE: Unraveling adipocyte-iNKT cell communication may help to fight obesity-induced AT dysfunction. Overproduction and/or accumulation of ceramide and ceramide metabolites, including glucosylceramides, can lead to insulin resistance. However, glucosylceramides also fulfill important physiological functions. They are presented by antigen presenting cells (APC) as endogenous lipid antigens via CD1d to activate a unique lymphocyte subspecies, the CD1d-restricted invariant (i) natural killer T (NKT) cells. Recently, adipocytes have emerged as lipid APC that can activate adipose tissue-resident iNKT cells and thereby contribute to whole body energy homeostasis. Here we investigate the role of the glucosylceramide biosynthesis pathway in the activation of iNKT cells by adipocytes. UDP-glucose ceramide glucosyltransferase (Ugcg), the first rate limiting step in the glucosylceramide biosynthesis pathway, was inhibited via chemical compounds and shRNA knockdown in vivo and in vitro. ß-1,4-Galactosyltransferase (B4Galt) 5 and 6, enzymes that convert glucosylceramides into potentially inactive lactosylceramides, were subjected to shRNA knock down. Subsequently, (pre)adipocyte cell lines were tested in co-culture experiments with iNKT cells (IFNγ and IL4 secretion). Inhibition of Ugcg activity shows that it regulates presentation of a considerable fraction of lipid self-antigens in adipocytes. Furthermore, reduced expression levels of either B4Galt5 or -6, indicate that B4Galt5 is dominant in the production of cellular lactosylceramides, but that inhibition of either enzyme results in increased iNKT cell activation. Additionally, in vivo inhibition of Ugcg by the aminosugar AMP-DNM results in decreased iNKT cell effector function in adipose tissue. Inhibition of endogenous glucosylceramide production results in decreased iNKT cells activity and cytokine production, underscoring the role of this biosynthetic pathway in lipid self-antigen presentation by adipocytes.


Assuntos
Adipócitos/metabolismo , Glucosilceramidas/biossíntese , Células T Matadoras Naturais/metabolismo , Adipócitos/citologia , Apresentação de Antígeno , Comunicação Celular , Linhagem Celular , Técnicas de Cocultura , Citocinas/metabolismo , Glucosilceramidas/metabolismo , Humanos , Resistência à Insulina , Lipídeos/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/citologia
18.
Cancer Chemother Pharmacol ; 79(5): 933-941, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28357533

RESUMO

BACKGROUND: Advanced breast cancer remains clinically challenging due to its resistance to chemotherapy. To understand the underlying mechanisms of resistance and identify drugable target, the involvement of ceramide metabolism is investigated. METHODS: Ceramide levels in breast cancer tissues derived from 30 patients with stage IV breast cancer before and after chemotherapy were analyzed using liquid chromatography mass spectrometry. mRNA and protein levels of ceramide enzymes were examined using western blot and QRT-PCR. The effects of ceramide analog were investigated using cellular assays and xenograft tumor model. RESULTS: The results demonstrated that pro-apoptotic ceramide was significantly lower in all patients after chemotherapy, suggesting that downregulation of ceramide is a common feature of breast cancer patients in response to chemotherapy. Molecular characteristics analysis of ceramide indicated C16:0 as the predominant sphingolipid regulated by chemotherapy in breast cancer patients. Mechanistically, ceramide levels were suppressed by chemotherapy via increasing mRNA and protein levels of UDP-glucose ceramide glucosyltransferase (UGCG). Importantly, inhibition of UGCG using siRNA or upregulation of cellular ceramide levels using C2 ceramide alone inhibited proliferation and induced apoptosis of breast cancer cells, and enhanced the inhibitory effects of chemotherapeutic drugs in vitro and in vivo. CONCLUSIONS: This study clearly demonstrated that the decreased ceramide production via up-regulating UGCG was involved in the resistance of breast cancer cells to chemotherapy. Stimulating ceramide or decreasing UGCG can potentially be useful for breast cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ceramidas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Glucosiltransferases/metabolismo , Humanos , Camundongos , Camundongos SCID , Proteínas de Transporte de Monossacarídeos/metabolismo , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Virology ; 492: 66-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26901486

RESUMO

BK polyomavirus (BKPyV) is a human pathogen that causes polyomavirus-associated nephropathy and hemorrhagic cystitis in transplant patients. Gangliosides and caveolin proteins have previously been reported to be required for BKPyV infection in animal cell models. Recent studies from our lab and others, however, have indicated that the identity of the cells used for infection studies can greatly influence the behavior of the virus. We therefore wished to re-examine BKPyV entry in a physiologically relevant primary cell culture model, human renal proximal tubule epithelial cells. Using siRNA knockdowns, we interfered with expression of UDP-glucose ceramide glucosyltransferase (UGCG), and the endocytic vesicle coat proteins caveolin 1, caveolin 2, and clathrin heavy chain. The results demonstrate that while BKPyV does require gangliosides for efficient infection, it can enter its natural host cells via a caveolin- and clathrin-independent pathway. The results emphasize the importance of studying viruses in a relevant cell culture model.


Assuntos
Vírus BK/efeitos dos fármacos , Caveolina 1/genética , Caveolina 2/genética , Cadeias Pesadas de Clatrina/genética , Células Epiteliais/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Vírus BK/genética , Vírus BK/metabolismo , Caveolina 1/antagonistas & inibidores , Caveolina 1/metabolismo , Caveolina 2/antagonistas & inibidores , Caveolina 2/metabolismo , Linhagem Celular , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/metabolismo , Células Epiteliais/virologia , Gangliosídeo G(M1)/farmacologia , Gangliosídeos/farmacologia , Regulação da Expressão Gênica , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Internalização do Vírus/efeitos dos fármacos
20.
Neurosci Lett ; 552: 71-5, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23933200

RESUMO

We studied the altered molecular species of lipids in brain and liver tissues, and fibroblasts from patients with Zellweger syndrome (ZS). ZS cerebellum samples contained a higher amount of sphingomyelin with shorter chain fatty acids compared to that in normal controls. The amount of phosphatidylethanolamine (PE) was less than half of that in controls, with the absence of the PE-type of plasmalogen. Gangliosides were accumulated in the brains and fibroblasts of ZS patients. To investigate whether or not impaired beta-oxidation of very long chain fatty acids and/or plasmalogen synthesis affects glycolipids metabolism, RNAi of peroxisomal acylCo-A oxidase (ACOX1) and glyceronephosphate O-acyltransferase (GNPAT) was performed using cultured neural cells. In neuronal F3-Ngn1 cells, ACOX1 and GNPAT silencing up-regulated ceramide galactosyltransferase (UGT8) mRNA expression, and down-regulated UDP-glucose ceramide glucosyltransferase (UGCG). These results suggest that both impaired beta-oxidation of very long chain fatty acids and plasmalogen synthesis affect glycolipid metabolism in neuronal cells.


Assuntos
Encéfalo/metabolismo , Fibroblastos/metabolismo , Glicolipídeos/metabolismo , Fígado/metabolismo , Fosfolipídeos/metabolismo , Síndrome de Zellweger/metabolismo , Acil-CoA Oxidase , Aciltransferases/genética , Estudos de Casos e Controles , Criança , Feminino , Inativação Gênica , Glucosiltransferases/biossíntese , Humanos , Lactente , Masculino , N-Acilesfingosina Galactosiltransferase/biossíntese , Neurônios/enzimologia , Neurônios/metabolismo , Oxirredutases/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA