Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 45(20): 10874-10882, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31007304

RESUMO

Inward radial diffusion driven by ULF waves has long been known to be capable of accelerating radiation belt electrons to very high energies within the heart of the belts, but more recent work has shown that radial diffusion values can be highly event-specific, and mean values or empirical models may not capture the full significance of radial diffusion to acceleration events. Here we present an event of fast inward radial diffusion, occurring during a period following the geomagnetic storm of 17 March 2015. Ultrarelativistic electrons up to ∼8 MeV are accelerated in the absence of intense higher-frequency plasma waves, indicating an acceleration event in the core of the outer belt driven primarily or entirely by ULF wave-driven diffusion. We examine this fast diffusion rate along with derived radial diffusion coefficients using particle and fields instruments on the Van Allen Probes spacecraft mission.

2.
Geophys Res Lett ; 44(8): 3456-3464, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28713180

RESUMO

We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 RE , suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.

3.
J Geophys Res Space Phys ; 127(2): e2021JA030032, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35864843

RESUMO

System-scale magnetohydrodynamic (MHD) waves within Earth's magnetosphere are often understood theoretically using box models. While these have been highly instructive in understanding many fundamental features of the various wave modes present, they neglect the complexities of geospace such as the inhomogeneities and curvilinear geometries present. Here, we show global MHD simulations of resonant waves impulsively excited by a solar wind pressure pulse. Although many aspects of the surface, fast magnetosonic (cavity/waveguide), and Alfvén modes present agree with the box and axially symmetric dipole models, we find some predictions for large-scale waves are significantly altered in a realistic magnetosphere. The radial ordering of fast mode turning points and Alfvén resonant locations may be reversed even with monotonic wave speeds. Additional nodes along field lines that are not present in the displacement/velocity occur in both the perpendicular and compressional components of the magnetic field. Close to the magnetopause, the perpendicular oscillations of the magnetic field have the opposite handedness to the velocity. Finally, widely used detection techniques for standing waves, both across and along the field, can fail to identify their presence. We explain how all these features arise from the MHD equations when accounting for a non-uniform background field and propose modified methods that might be applied to spacecraft observations.

4.
J Geophys Res Space Phys ; 127(11): e2022JA030647, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36591599

RESUMO

Here, we extend the scope of the Gamayunov and Engebretson (2021, hereinafter Paper 1), https://doi.org/10.1029/2021JA029247 work by analyzing the low frequency ultra-low-frequency (ULF) wave power spectra in the Earth's inner magnetosphere during high speed stream (HSS) and quiet solar wind (QSW) driving conditions in the upstream solar wind (SW) and comparing our results to the results of Paper 1, where the statistics of ULF wave power spectra during coronal mass ejections (CMEs) are presented. The most important results of our statistical and comparative analyses are as follows. (a) During CMEs, HSSs, and QSW, the magnetic field power spectra of the transverse and compressional fluctuations are well approximated by power laws in the ∼mHz-Hz frequency range, where on average the parameters of power law fits during CMEs and HSSs are close, and those during QSW differ considerably from the respective parameters during CMEs and HSSs. (b) The dominance of the average compressional power over the average transverse power for the low frequency ULF waves during the 0 < SYM/H â‰² 25 nT geomagnetic conditions may serve as a proxy of HSSs in the upstream SW, whereas the opposite relation between the average powers is an indication of CMEs. (c) Independently of the SW driving conditions, a turbulent energy cascade from low frequencies in the ULF wave frequency range into the higher frequency range exists in the Earth's inner magnetosphere, supplying the nonthermal electromagnetic seed fluctuations needed for the growth of electromagnetic ion cyclotron waves (∼Hz) due to relaxation of unstable distributions of energetic magnetospheric ions.

5.
J Geophys Res Space Phys ; 127(2): e2021JA030115, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35847659

RESUMO

Previous spacecraft studies showed that stormtime poloidal ultralow-frequency (ULF) waves in the ring current region have an antisymmetric (second harmonic) mode structure about the magnetic equator. This paper reports Van Allen Probes observations of symmetric ULF waves in the postnoon sector during a moderate geomagnetic storm. The mode structure is determined from the presence of purely compressional magnetic field oscillations at the equator accompanied by strong transverse electric field perturbations. Antisymmetric waves were also detected but only very late in the recovery phase. The symmetric waves were detected outside the plasmasphere at L = 3.0-5.5 and had peak power at 4-10 mHz, lower than the frequency of the local fundamental toroidal standing Alfvén wave. During the wave events, the flux of protons was enhanced at energies below ∼5 keV, which appears to be a prerequisite for the waves. The protons may provide free energies to waves through drift resonance instability or drift compressional instability, which occur in the presence of radial gradients of plasma parameters.

6.
J Geophys Res Space Phys ; 127(3): e2021JA030144, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35859722

RESUMO

Identifying the nature and source of ultra-low frequencies (ULF) waves (f ⪅ 4 mHz) at discrete frequencies in the Earth's magnetosphere is a complex task. The challenge comes from the simultaneous occurrence of externally and internally generated waves, and the ability to robustly identify such perturbations. Using a recently developed robust spectral analysis procedure, we study an interval that exhibited in magnetic field measurements at geosynchronous orbit and in-ground magnetic observatories both internally supported and externally generated ULF waves. The event occurred on 9 November 2002 during the interaction of the magnetosphere with two interplanetary shocks that were followed by a train of 90 min solar wind periodic density structures. Using the Wang-Sheeley-Arge model, we mapped the source of this solar wind stream to an active region and a mid-latitude coronal hole just prior to crossing the Heliospheric current sheet. In both the solar wind density and magnetospheric field fluctuations, we separated broad power increases from enhancements at specific frequencies. For the waves at discrete frequencies, we used the combination of satellite and ground magnetometer observations to identify differences in frequency, polarization, and observed magnetospheric locations. The magnetospheric response was characterized by: (a) forced breathing by periodic solar wind dynamic pressure variations below ≈1 mHz, (b) a combination of directly driven oscillations and wave modes triggered by additional mechanisms (e.g., shock and interplanetary magnetic field discontinuity impact, and substorm activity) between ≈1 and 4 mHz, and (c) largely triggered modes above ≈4 mHz.

7.
J Geophys Res Space Phys ; 126(2): e2020JA028773, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33680691

RESUMO

Results from the NASA Van Allen Probes mission indicate extensive observations of mirror/drift-mirror (M/D-M hereafter) unstable plasma regions in the night-side inner magnetosphere. Said plasmas lie on the threshold between the kinetic and frozen-in plasma regimes and have favorable conditions for the formation of M/D-M modes and subsequent ultralow frequency (ULF) wave signatures in the surrounding plasma. We present the results of a climatological analysis of plasma-γ (anisotropy measure) and total plasma-ß (ratio of particle to magnetic field pressure) in regard to the satisfaction of instability conditions on said M/D-M modes under bi-Maxwellian distribution assumption, and ascertain the most likely region for such plasmas to occur. Our results indicate a strong preference for the premidnight sector of the night-side magnetosphere, with events ranging in time scales from half a minute (roughly 200 km in scale size) to several hours (multiple Earth radii). The statistical distribution of these plasma regions explicitly identifies the source region of "storm time Pc5 ULF waves" and suggests an alternative mechanism for their generation in the night-side inner magnetosphere.

8.
J Geophys Res Space Phys ; 125(9): e2020JA027942, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999807

RESUMO

We present the first systematic analysis of global ionospheric disturbance current systems caused by multiple processes of solar and magnetospheric origin, including reorientations of the interplanetary magnetic field (IMF), sudden changes in the solar wind dynamic pressure, magnetospheric sawtooth substorms, and ultralow frequency (ULF) waves. Measurements from global magnetometer networks are used to derive the equivalent disturbance currents from the polar cap to the equator. A surprising result is that the equivalent disturbance current systems are very similar, although the driving processes are completely different. The equivalent disturbance current system in response to IMF reorientation or substorm onset is characterized by a large vortex on the dayside and evening sector and a smaller vortex near dawn, and the polarity of the current vortices depends on the IMF direction. The equivalent disturbance current system caused by a sudden change in the solar wind pressure or by ULF waves consists of a single vortex at middle and low latitudes and a very small vortex above ~60° magnetic latitude near dawn. The similar disturbance current systems caused by different solar wind and magnetospheric processes suggest that the global distribution of the ionospheric currents is determined by the intrinsic property of the ionosphere. The global current system takes only ~1 min to completely reconstruct, indicating that the current system can reach a new steady state within 1 min. A scenario is proposed to explain the global distribution and fast reconstruction of the current systems.

9.
J Geophys Res Space Phys ; 123(8): 6457-6477, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31681521

RESUMO

Ultralow frequency (ULF) waves play a fundamental role in the dynamics of the inner magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion, and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale mission, we characterize the evolution of ULF waves during a high-speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the Magnetospheric Multiscale spacecraft, we estimate the toroidal mode ULF azimuthal wave number throughout the geomagnetic storm. We concentrate on the toroidal mode as the HSS compresses the dayside magnetosphere resulting in an asymmetric magnetic field topology where toroidal mode waves can interact with energetic electrons. Analysis of the mode structure and wave numbers demonstrates that the generation of the observed ULF waves is a combination of externally driven waves, via the Kelvin-Helmholtz instability, and internally driven waves, via unstable ion distributions. Further analysis of the periods and toroidal azimuthal wave numbers suggests that these waves can couple with the core electron radiation belt population via the drift resonance during the storm. The azimuthal wave number and structure of ULF wave power (broadband or discrete) have important implications for the inner magnetospheric and radiation belt dynamics.

10.
J Geophys Res Space Phys ; 121(8): 7895-7899, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27867798

RESUMO

Wave-particle interactions play a crucial role in energetic particle dynamics in the Earth's radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.

11.
J Geophys Res Space Phys ; 120(10): 8503-8516, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27867792

RESUMO

We present the first multievent study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wave number with the most unstable spatial scales mapping to an azimuthal wavelength λ≈ 1700-2500 km in the equatorial magnetosphere at around 9-12 RE . We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the Cross-Field Current Instability and the Shear Flow Ballooning Instability. We conclude that, although the Cross-Field Current instability can generate similar magnitude of growth rates, the range of unstable wave numbers indicates that the Shear Flow Ballooning Instability is the most likely explanation for our observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA