Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Magn Reson Med ; 91(5): 1893-1907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38115573

RESUMO

PURPOSE: The inflow-based vascular-space-occupancy (iVASO) MRI was originally developed in a single-slice mode to measure arterial cerebral blood volume (CBVa). When vascular crushers are applied in iVASO, the signals can be sensitized predominantly to small pial arteries and arterioles. The purpose of this study is to perform a systematic optimization and evaluation of a 3D iVASO sequence on both 3 T and 7 T for the quantification of CBVa values in the human brain. METHODS: Three sets of experiments were performed in three separate cohorts. (1) 3D iVASO MRI protocols were compared to single-slice iVASO, and the reproducibility of whole-brain 3D iVASO MRI was evaluated. (2) The effects from different vascular crushers in iVASO were assessed. (3) 3D iVASO MRI results were evaluated in arterial and venous blood vessels identified using ultrasmall-superparamagnetic-iron-oxides-enhanced MRI to validate its arterial origin. RESULTS: 3D iVASO scans showed signal-to-noise ratio (SNR) and CBVa measures consistent with single-slice iVASO with reasonable intrasubject reproducibility. Among the iVASO scans performed with different vascular crushers, the whole-brain 3D iVASO scan with a motion-sensitized-driven-equilibrium preparation with two binomial refocusing pulses and an effective TE of 50 ms showed the best suppression of macrovascular signals, with a relatively low specific absorption rate. When no vascular crusher was applied, the CBVa maps from 3D iVASO scans showed large CBVa values in arterial vessels but well-suppressed signals in venous vessels. CONCLUSION: A whole-brain 3D iVASO MRI scan was optimized for CBVa measurement in the human brain. When only microvascular signals are desired, a motion-sensitized-driven-equilibrium-based vascular crusher with binomial refocusing pulses can be applied in 3D iVASO.


Assuntos
Volume Sanguíneo Cerebral , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Artérias
2.
Neuroimage ; 250: 118957, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122968

RESUMO

The hippocampus is a small but complex grey matter structure that plays an important role in spatial and episodic memory and can be affected by a wide range of pathologies including vascular abnormalities. In this work, we introduce the use of Ferumoxytol, an ultra-small superparamagnetic iron oxide (USPIO) agent, to induce susceptibility in the arteries (as well as increase the susceptibility in the veins) to map the hippocampal micro-vasculature and to evaluate the quantitative change in tissue fractional vascular density (FVD), in each of its subfields. A total of 39 healthy subjects (aged 35.4 ± 14.2 years, from 18 to 81 years old) were scanned with a high-resolution (0.22×0.44×1 mm3) dual-echo SWI sequence acquired at four time points during a gradual increase in Ferumoxytol dose (final dose = 4 mg/kg). The volumes of each subfield were obtained automatically from the pre-contrast T1-weighted data. The dynamically acquired SWI data were co-registered and adaptively combined to reduce the blooming artifacts from large vessels, preserving the contrast from smaller vessels. The resultant SWI data were used to segment the hippocampal vasculature and to measure the FVD ((volume occupied by vessels)/(total volume)) for each subfield. The hippocampal fissure, along with the fimbria, granular cell layer of the dentate gyrus and cornu ammonis layers (except for CA1), showed higher micro-vascular FVD than the other parts of hippocampus. The CA1 region exhibited a significant correlation with age (R = -0.37, p < 0.05). demonstrating an overall loss of hippocampal vascularity in the normal aging process. Moreover, the vascular density reduction was more prominent than the age correlation with the volume reduction (R = -0.1, p > 0.05) of the CA1 subfield, which would suggest that vascular degeneration may precede tissue atrophy.


Assuntos
Mapeamento Encefálico/métodos , Óxido Ferroso-Férrico/administração & dosagem , Hipocampo/irrigação sanguínea , Angiografia por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Microcirculação , Pessoa de Meia-Idade
3.
J Nanobiotechnology ; 19(1): 171, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103070

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a type of head and neck malignant tumor with a high incidence in specific regional distribution, and its traditional therapies face some challenges. It has become an urgent need to seek new therapeutic strategies without or with low toxicity and side effects. At present, more and more researchers has been attracting attention by nanotheranostic platform. Therefore, our team synthesized the polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X (USPIO-PEG-sLex) nanotheranostic platform with high temperature pyrolysis. RESULTS: The USPIO-PEG-sLex nanoparticles had excellent photothermal conversion property, and the temperature of USPIO-PEG-sLex nanoparticles solution increased with its concentration and power density of near-infrared (NIR) on 808 nm wavelengths. Five USPIO-PEG-sLex nanoparticles with different concentrations of 0 mg/ml, 0.025 mg/ml, 0.05 mg/ml, 0.1 mg/ml and 0.2 mg/ml were prepared. The biological toxicity results showed that the viability of NPC 5-8F cells is related to the concentration of USPIO-PEG-sLex nanoparticles and the culture time (P < 0.001). The results of photothermal therapy (PTT) in vitro indicated that the viability of 5-8F cells decreased significantly with the concentration of USPIO-PEG-sLex nanoparticles increases (P < 0.001), and the viability of NPC 5-8F cells were 91.04% ± 5.20%, 77.83% ± 3.01%, 73.48% ± 5.55%, 59.50% ± 10.98%, 17.11% ± 3.14%, respectively. The USPIO-PEG-sLex nanoparticles could target the tumor area, and reduce the T2* value of tumor tissue. The T2* values of tumor pre- and post-injection were 30.870 ± 5.604 and 18.335 ± 4.351, respectively (P < 0.001). In addition, USPIO-PEG-sLex nanoparticles as a photothermal agent for PTT could effectively inhibit tumor progression. The ratio of volume change between tail vein injection group, control group, nanoparticles without laser irradiation group and blank group after 5 treatments were 3.04 ± 0.57, 5.80 ± 1.06, 8.09 ± 1.96, 7.89 ± 2.20, respectively (P < 0.001). CONCLUSIONS: Our synthesized USPIO-PEG-sLex nanotheranostic platform, and it may be become a new strategy for the treatment of NPC.


Assuntos
Dextranos/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Carcinoma Nasofaríngeo/tratamento farmacológico , Terapia Fototérmica/métodos , Polietilenoglicóis/química , Antígeno Sialil Lewis X/farmacologia , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas , Fototerapia , Antígeno Sialil Lewis X/química
4.
BMC Med Imaging ; 21(1): 164, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749671

RESUMO

The role of inflammation in cardiovascular pathophysiology has gained a lot of research interest in recent years. Cardiovascular Magnetic Resonance has been a powerful tool in the non-invasive assessment of inflammation in several conditions. More recently, Ultrasmall superparamagnetic particles of iron oxide have been successfully used to evaluate macrophage activity and subsequently inflammation on a cellular level. Current evidence from research studies provides encouraging data and confirms that this evolving method can potentially have a huge impact on clinical practice as it can be used in the diagnosis and management of very common conditions such as coronary artery disease, ischaemic and non-ischaemic cardiomyopathy, myocarditis and atherosclerosis. Another important emerging concept is that of myocardial energetics. With the use of phosphorus magnetic resonance spectroscopy, myocardial energetic compromise has been proved to be an important feature in the pathophysiological process of several conditions including diabetic cardiomyopathy, inherited cardiomyopathies, valvular heart disease and cardiac transplant rejection. This unique tool is therefore being utilized to assess metabolic alterations in a wide range of cardiovascular diseases. This review systematically examines these state-of-the-art methods in detail and provides an insight into the mechanisms of action and the clinical implications of their use.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Compostos Férricos/administração & dosagem , Inflamação/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia
5.
Circulation ; 139(13): 1581-1592, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30586731

RESUMO

BACKGROUND: Acute stress-induced (takotsubo) cardiomyopathy can result in a heart failure phenotype with a prognosis comparable with that of myocardial infarction. In this study, we hypothesized that inflammation is central to the pathophysiology and natural history of takotsubo cardiomyopathy. METHODS: In a multicenter study, we prospectively recruited 55 patients with takotsubo cardiomyopathy and 51 age-, sex-, and comorbidity-matched control subjects. During the index event and at the 5-month follow-up, patients with takotsubo cardiomyopathy underwent multiparametric cardiac magnetic resonance imaging, including ultrasmall superparamagnetic particles of iron oxide (USPIO) enhancement for detection of inflammatory macrophages in the myocardium. Blood monocyte subpopulations and serum cytokines were assessed as measures of systemic inflammation. Matched control subjects underwent investigation at a single time point. RESULTS: Subjects were predominantly middle-aged (64±14 years) women (90%). Compared with control subjects, patients with takotsubo cardiomyopathy had greater USPIO enhancement (expressed as the difference between pre-USPIO and post-USPIO T2*) in both ballooning (14.3±0.6 milliseconds versus 10.5±0.9 milliseconds; P<0.001) and nonballooning (12.9±0.6 milliseconds versus 10.5±0.9 milliseconds; P=0.02) left ventricular myocardial segments. Serum interleukin-6 (23.1±4.5 pg/mL versus 6.5±5.8 pg/mL; P<0.001) and chemokine (C-X-C motif) ligand 1 (1903±168 pg/mL versus 1272±177 pg/mL; P=0.01) concentrations and classic CD14++CD16- monocytes (90±0.5% versus 87±0.9%; P=0.01) were also increased whereas intermediate CD14++CD16+ (5.4±0.3% versus 6.9±0.6%; P=0.01) and nonclassic CD14+CD16++ (2.7±0.3% versus 4.2±0.5%; P=0.006) monocytes were reduced in patients with takotsubo cardiomyopathy. At 5 months, USPIO enhancement was no longer detectable in the left ventricular myocardium, although persistent elevations in serum interleukin-6 concentrations ( P=0.009) and reductions in intermediate CD14++CD16+ monocytes (5.6±0.4% versus 6.9±0.6%; P=0.01) remained. CONCLUSIONS: We demonstrate for the first time that takotsubo cardiomyopathy is characterized by a myocardial macrophage inflammatory infiltrate, changes in the distribution of monocyte subsets, and an increase in systemic proinflammatory cytokines. Many of these changes persisted for at least 5 months, suggesting a low-grade chronic inflammatory state. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifier: NCT02897739.


Assuntos
Imageamento por Ressonância Magnética , Miocardite , Cardiomiopatia de Takotsubo , Doença Aguda , Idoso , Quimiocina CXCL1/sangue , Feminino , Seguimentos , Humanos , Inflamação , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Miocardite/sangue , Miocardite/diagnóstico por imagem , Miocardite/fisiopatologia , Estudos Prospectivos , Cardiomiopatia de Takotsubo/sangue , Cardiomiopatia de Takotsubo/diagnóstico por imagem , Cardiomiopatia de Takotsubo/fisiopatologia
6.
Magn Reson Med ; 84(2): 686-697, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31961969

RESUMO

PURPOSE: Imaging carotid artery plaques to identify features of vulnerability typically requires a multicontrast MRI protocol. The identification of regions of inflammation with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles requires separate pre- and postcontrast scans. We propose a method of joint water-fat separation and quantitative susceptibility mapping (QSM) to aid classification of atherosclerotic plaques and offer a positive contrast mechanism in USPIO-imaging. METHODS: Ten healthy volunteers (3 women and 7 men; aged, 30.7 ± 10.7 years) were imaged at 1.5T to develop an acquisition and postprocessing protocol. Five patients (1 woman and 4 men; mean age, 71 ± 7.5 years) with moderate to severe luminal stenosis were imaged pre- and postadministration of a USPIO contrast agent. We used a multiecho gradient echo acquisition to perform water/fat separation and subsequently QSM. The results were compared with a conventional multicontrast MRI protocol, CT images, and histopathology data. RESULTS: In the volunteer scans, a multiecho gradient echo acquisition with bipolar readout gradients demonstrated to be a reliable acquisition methodology to produce high-quality susceptibility maps in conjunction with the proposed postprocessing methodology. In the patient study, water/fat separation provided a tool to identify lipid-rich necrotic cores and QSM provided a qualitative and quantitative evaluation of plaque features and positive contrast when evaluating USPIO uptake. Plaque calcification could be identified by strong diamagnetism (-1.27 ± 0.71 ppm), while USPIO uptake demonstrated a strong paramagnetism (1.32 ± 0.61 ppm). CONCLUSION: QSM was able to identify multiple plaque features in a single acquisition, providing positive contrast for plaques demonstrating USPIO uptake and negative contrast for calcification.


Assuntos
Estenose das Carótidas , Nanopartículas de Magnetita , Idoso , Estenose das Carótidas/diagnóstico por imagem , Meios de Contraste , Dextranos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Água
7.
Nanomedicine ; 29: 102233, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522710

RESUMO

Ultra-small superparamagnetic iron oxide (USPIO) nanoparticles appear to be promising tools for MR lymphography due to their unique magnetic properties. In clinical diagnosis, the effectiveness of USPIO will greatly affect the clinician's judgment to the enhanced MR images. In this study, we evaluated the effectiveness of CS015, a PAA-coated USPIO, with subcutaneous and intravenous administration. It appeared that subcutaneously injected particles had much higher efficiency to reach lymph nodes, and even worked at a very small dose 0.075 µmol/kg. Further, we compared CS015 with ferumoxytol and ferumoxtran-10 in MR lymphography and found that CS015 had the best performance. And the lymph node metastases in New Zealand rabbits were successfully detected using CS015 with one single dose. These merits of CS015 make it a promising MR lymphography contrast agent with potential applications in cancer therapy.


Assuntos
Meios de Contraste/farmacologia , Linfonodos/ultraestrutura , Linfografia/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste/química , Dextranos/química , Dextranos/farmacologia , Humanos , Aumento da Imagem/métodos , Linfonodos/efeitos dos fármacos , Metástase Linfática/diagnóstico por imagem , Nanopartículas de Magnetita/química , Coelhos
8.
Proc Natl Acad Sci U S A ; 114(23): 6116-6121, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533365

RESUMO

New strategies for detecting disease activity in multiple sclerosis are being investigated to ameliorate diagnosis and follow-up of patients. Today, although magnetic resonance imaging (MRI) is widely used to diagnose and monitor multiple sclerosis, no imaging tools exist to predict the evolution of disease and the efficacy of therapeutic strategies. Here, we show that molecular MRI targeting the endothelial adhesion molecule P-selectin unmasks the pathological events that take place in the spinal cord of mice subjected to chronic or relapsing experimental autoimmune encephalomyelitis. This approach provides a quantitative spatiotemporal follow-up of disease course in relation to clinical manifestations. Moreover, it predicts relapse in asymptomatic mice and remission in symptomatic animals. Future molecular MRI targeting P-selectin may be used to improve diagnosis, follow-up of treatment, and management of relapse/remission cycles in multiple sclerosis patients by providing information currently inaccessible through conventional MRI techniques.


Assuntos
Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/patologia , Meios de Contraste , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Selectina-P/metabolismo , Recidiva , Medula Espinal/patologia
9.
Neuroimage ; 187: 77-92, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29702183

RESUMO

Measuring iron content has practical clinical indications in the study of diseases such as Parkinson's disease, Huntington's disease, ferritinopathies and multiple sclerosis as well as in the quantification of iron content in microbleeds and oxygen saturation in veins. In this work, we review the basic concepts behind imaging iron using T2, T2*, T2', phase and quantitative susceptibility mapping in the human brain, liver and heart, followed by the applications of in vivo iron quantification in neurodegenerative diseases, iron tagged cells and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles.


Assuntos
Química Encefálica , Encéfalo/diagnóstico por imagem , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Animais , Compostos Férricos/química , Humanos , Processamento de Imagem Assistida por Computador , Ferro/metabolismo , Fígado/química , Fígado/diagnóstico por imagem , Nanopartículas de Magnetita/química , Miocárdio/química , Doenças Neurodegenerativas/metabolismo
10.
Cephalalgia ; 39(11): 1407-1420, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31104505

RESUMO

BACKGROUND: Initiating mechanisms of migraine headache remain poorly understood and a biomarker of migraine does not exist. Inflammation pertaining to the wall of cerebral arteries and brain parenchyma has been suggested to play a role in migraine pathophysiology. OBJECTIVE: We conducted the first experimental human study to investigate macrophage-mediated inflammation as a possible biomarker of migraine. METHODS: Using ultrasmall superparamagnetic iron oxide (USPIO)-enhanced 3T magnetic resonance imaging (MRI), we investigated the presence of macrophages in cerebral artery walls and in brain parenchyma of patients with migraine without aura. We used the phosphodiesterase-3-inhibitor cilostazol as an experimental migraine trigger, and investigated both patients who received sumatriptan treatment, and patients who did not. To validate our use of USPIO-enhanced MRI, we included a preclinical mouse model with subcutaneous capsaicin injection in the trigeminal V1 area. The study is registered at ClinicalTrials.gov with the identifier NCT02549898. RESULTS: A total of 28 female patients with migraine without aura underwent a baseline MRI scan, ingested cilostazol, developed a migraine-like attack, and underwent an USPIO-enhanced MRI scan > 24 hours after intravenous administration of USPIO. Twelve patients treated their attack with 6 mg s.c. sumatriptan, while the remaining 16 patients received no migraine-specific rescue medication. The preclinical model confirmed that USPIO-enhanced MRI detects macrophage-mediated inflammation. In patients, however, migraine attacks were not associated with increased USPIO signal on the pain side of the head compared to the non-pain side. CONCLUSION: Our findings suggest that migraine without aura is not associated with macrophage-mediated inflammation specific to the head pain side.


Assuntos
Encéfalo/diagnóstico por imagem , Inflamação/diagnóstico por imagem , Macrófagos , Transtornos de Enxaqueca/diagnóstico por imagem , Neuroimagem/métodos , Adulto , Animais , Cilostazol/toxicidade , Dextranos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Camundongos , Pessoa de Meia-Idade , Transtornos de Enxaqueca/induzido quimicamente , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Sumatriptana/farmacologia , Vasodilatadores/toxicidade
11.
Proc Natl Acad Sci U S A ; 113(46): 13227-13232, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799546

RESUMO

Innate immune cells play a key role in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Current clinical imaging is restricted to visualizing secondary effects of inflammation, such as gliosis and blood-brain barrier disruption. Advanced molecular imaging, such as iron oxide nanoparticle imaging, can allow direct imaging of cellular and molecular activity, but the exact cell types that phagocytose nanoparticles in vivo and how phagocytic activity relates to disease severity is not well understood. In this study we used MRI to map inflammatory infiltrates using high-field MRI and fluorescently labeled cross-linked iron oxide nanoparticles for cell tracking. We confirmed nanoparticle uptake and MR detectability ex vivo. Using in vivo MRI, we identified extensive nanoparticle signal in the cerebellar white matter and circumscribed cortical gray matter lesions that developed during the disease course (4.6-fold increase of nanoparticle accumulation in EAE compared with healthy controls, P < 0.001). Nanoparticles showed good cellular specificity for innate immune cells in vivo, labeling activated microglia, infiltrating macrophages, and neutrophils, whereas there was only sparse uptake by adaptive immune cells. Importantly, nanoparticle signal correlated better with clinical disease than conventional gadolinium (Gd) imaging (r, 0.83 for nanoparticles vs. 0.71 for Gd-imaging, P < 0.001). We validated our approach using the Food and Drug Administration-approved iron oxide nanoparticle ferumoxytol. Our results show that noninvasive molecular imaging of innate immune responses can serve as an imaging biomarker of disease activity in autoimmune-mediated neuroinflammation with potential clinical applications in a wide range of inflammatory diseases.


Assuntos
Encefalomielite Autoimune Experimental/diagnóstico por imagem , Nanopartículas de Magnetita/administração & dosagem , Esclerose Múltipla/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Imunidade Inata , Macrófagos/imunologia , Imageamento por Ressonância Magnética , Camundongos , Microglia/imunologia , Esclerose Múltipla/imunologia , Fagocitose , Índice de Gravidade de Doença
12.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759756

RESUMO

A protocol for evaluating ultrasmall superparamagnetic particles of iron oxide (USPIO) uptake and elimination in cerebral small vessel disease patients was developed and piloted. B1-insensitive R1 measurement was evaluated in vitro. Twelve participants with history of minor stroke were scanned at 3-T MRI including structural imaging, and R1 and R2* mapping. Participants were scanned (i) before and (ii) after USPIO (ferumoxytol) infusion, and again at (iii) 24⁻30 h and (iv) one month. Absolute and blood-normalised changes in R1 and R2* were measured in white matter (WM), deep grey matter (GM), white matter hyperintensity (WMH) and stroke lesion regions. R1 measurements were accurate across a wide range of values. R1 (p < 0.05) and R2* (p < 0.01) mapping detected increases in relaxation rate in all tissues immediately post-USPIO and at 24⁻30 h. R2* returned to baseline at one month. Blood-normalised R1 and R2* changes post-infusion and at 24⁻30 h were similar, and were greater in GM versus WM (p < 0.001). Narrower distributions were seen with R2* than for R1 mapping. R1 and R2* changes were correlated at 24⁻30 h (p < 0.01). MRI relaxometry permits quantitative evaluation of USPIO uptake; R2* appears to be more sensitive to USPIO than R1. Our data are explained by intravascular uptake alone, yielding estimates of cerebral blood volume, and did not support parenchymal uptake. Ferumoxytol appears to be eliminated at 1 month. The approach should be valuable in future studies to quantify both blood-pool USPIO and parenchymal uptake associated with inflammatory cells or blood-brain barrier leak.


Assuntos
Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Compostos Férricos/metabolismo , Óxido Ferroso-Férrico/metabolismo , Idoso , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Estudos de Avaliação como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/administração & dosagem , Masculino
13.
J Cell Physiol ; 233(8): 5823-5828, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29230805

RESUMO

Aim of the study was to evaluate USPIO labeling in different macrophage populations using a clinical 3.0T MR unit with optical and electron microscopy as the gold standard. Human monocytic cell line THP-1 cells were differentiated into macrophages. Afterwards, M0 macrophages were incubated with IL-4 and IL-13 in order to obtain M2 polarized macrophages or with IFN-gamma and LPS for classical macrophage activation (M1). These groups were incubated with USPIO-MR contrast agent (P904) for 36 hr; M0, M0 + P904, M1 + P904, and M2 + P904 were analyzed in gel phantoms with a 3.0T MR scanner. m-RNA of M1 and M2 markers confirmed the polarization of THP-1-derived macrophages. M2 + P904 showed a much higher T1 signal (p < 0.0001), a significantly lower (p < 0.0001) T2* signal, and significantly higher R* (p < 0.0001) compared to the other populations. Hystological analysis confirmed higher iron content in the M2-polarized population compared to both M1-polarized (p = 0.04) and M0-P904 (p = 0.003). Ultrastructure analysis demonstrated ubiquitous localization of P904 within the cellular compartments. Our results demonstrate that a selective USPIO-labeling of different macrophage populations can be detected in vitro using the 3.0T clinical scanner.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste/farmacologia , Dextranos/farmacologia , Macrófagos/ultraestrutura , Imageamento por Ressonância Magnética/métodos , Coloração e Rotulagem/métodos , Diferenciação Celular , Linhagem Celular , Polaridade Celular/fisiologia , Humanos , Ativação de Macrófagos , Macrófagos/citologia , Nanopartículas de Magnetita , Microscopia Eletrônica/métodos , Monócitos/citologia
14.
Magn Reson Med ; 80(1): 224-230, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29205477

RESUMO

PURPOSE: Delayed ferumoxytol enhancement on T1 -weighted images appears visually similar to gadoteridol enhancement. The purpose of this study was to quantitatively compare ferumoxytol T1 enhancement to gadoteridol enhancement with an objective, semi-automated method. METHODS: 206 sets of post-gadoteridol and 24 h post-ferumoxytol T1 -weighted scans from 58 high grade glioma patients were analyzed (9 pre-chemoradiation, 111 < 90 days post-chemoradiation, 21 > 90 days post-chemoradiation, 65 post-bevacizumab scans). Enhancement volumes and signal intensities normalized to normal appearing tissue proximal to enhancement were calculated with a semi-automated method. Enhancement cube root volumes (D) and signal intensities (SI) were compared between the 2 contrast agents, and relative difference of D and SI were compared in different treatment groups with multivariate analysis. Within patient differences in D and SI before and after treatment with bevacizumab or steroid were assessed in 26 patients in each treatment group. RESULTS: When compared to gadoteridol, ferumoxytol D was 13.83% smaller and SI was 7.24% lower (P < 0.0001). The relative differences in D and SI between the 2 contrast agents were not significantly different between treatment groups (P > 0.05). Relative difference in D and SI did not change significantly in response to bevacizumab (P = 0.5234 and P = 0.2442, respectively) or to steroid (P = 0.3774, P = 0.0741) in the within patient comparison. CONCLUSION: The correlation between the 2 contrast agents' enhancement size and signal intensity and their similar behavior in response to therapy suggest that ferumoxytol can be used for revealing enhancement in high grade glioma patients. Magn Reson Med 80:224-230, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste/química , Óxido Ferroso-Férrico/química , Glioma/diagnóstico por imagem , Compostos Heterocíclicos/química , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Compostos Organometálicos/química , Adulto , Bevacizumab , Quimiorradioterapia , Feminino , Gadolínio/química , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Reconhecimento Automatizado de Padrão
15.
J Magn Reson Imaging ; 47(3): 621-633, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28731570

RESUMO

PURPOSE: To demonstrate the potential of imaging cerebral arteries and veins with ferumoxytol using susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: The relationships between ferumoxytol concentration and the apparent susceptibility at 1.5T, 3T, and 7T were determined using phantom data; the ability of visualizing subvoxel vessels was evaluated using simulations; and the feasibility of using ferumoxytol to enhance the visibility of small vessels was confirmed in three healthy volunteers at 7T(with doses 1 mg/kg to 4 mg/kg). The visualization of the lenticulostriate arteries and the medullary veins was assessed by two raters and the contrast-to-noise ratios (CNRs) of these vessels were measured. RESULTS: The relationship between ferumoxytol concentration and susceptibility was linear with a slope 13.3 ± 0.2 ppm·mg-1 ·mL at 7T. Simulations showed that SWI data with an increased dose of ferumoxytol, higher echo time (TE), and higher imaging resolution improved the detection of smaller vessels. With 4 mg/kg ferumoxytol, voxel aspect ratio = 1:8, TE = 10 ms, the diameter of the smallest detectable artery was approximately 50µm. The rating score for arteries was improved from 1.5 ± 0.5 (precontrast) to 3.0 ± 0.0 (post-4 mg/kg) in the in vivo data and the apparent susceptibilities of the arteries (0.65 ± 0.02 ppm at 4 mg/kg) agreed well with the expected susceptibility (0.71 ± 0.05 ppm). CONCLUSION: The CNR for cerebral vessels with ferumoxytol can be enhanced using SWI, and the apparent susceptibilities of the arteries can be reliably quantified using QSM. This approach improves the imaging of the entire vascular system outside the capillaries and may be valuable for a variety of neurodegenerative diseases which involve the microvasculature. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:621-633.


Assuntos
Encéfalo/irrigação sanguínea , Artérias Cerebrais/fisiologia , Óxido Ferroso-Férrico , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Artérias Cerebrais/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Pessoa de Meia-Idade , Imagens de Fantasmas , Valores de Referência
16.
Mult Scler ; 24(14): 1852-1861, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29064775

RESUMO

BACKGROUND: Identifying in vivo the processes that determine lesion severity in multiple sclerosis (MS) remains a challenge. OBJECTIVES: To describe the dynamics of ultrasmall superparamagnetic iron oxide (USPIO) enhancement in MS lesions and the relationship between USPIO enhancement and microstructural changes over 3 years. METHODS: Lesion development was assessed at baseline, Months 3, 6, and 9, using magnetic resonance imaging (MRI) with gadolinium and USPIO. Microstructural changes were assessed at baseline, Months 3, 6, 9, 12, 18, 24, and 36, using relaxometry, magnetization transfer, and diffusion-weighted imaging. RESULTS: We included 15 patients with clinically isolated syndrome. In the 52 MRI scans acquired with USPIO, 22 lesions were USPIO and gadolinium positive, and 44 were USPIO negative but gadolinium positive. Lesions no longer exhibited sustained USPIO enhancement 3 months later. At baseline, lesions that were both USPIO and gadolinium positive had lower magnetization transfer ratio values (common language effect size = 0.84, p = 0.0005) and lower fractional anisotropy values (0.83, p = 0.001) than gadolinium-positive-only lesions. USPIO-positive lesions remained associated with greater damage than gadolinium-positive-only lesions throughout the 3-year follow-up. CONCLUSION: USPIO enhancement, mainly reflecting monocyte infiltration, is transient and is associated with persistent tissue damage after 3 years.


Assuntos
Encéfalo/patologia , Doenças Desmielinizantes/patologia , Monócitos/patologia , Esclerose Múltipla/patologia , Adulto , Feminino , Seguimentos , Gadolínio/farmacologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
17.
Acta Radiol ; 59(12): 1431-1437, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29566551

RESUMO

BACKGROUND: Atherosclerosis is the main cause of cardiovascular and cerebrovascular diseases. Non-invasive molecular imaging to detect and characterize the plaques is essential for reducing life-threatening cardiovascular events. PURPOSE: To investigate the possibility of the anti-tenascin-C-USPIO specific probe as a molecular marker of atherosclerotic plaques detected by 7.0-T magnetic resonance imaging (MRI). MATERIAL AND METHODS: Twenty ApoE-/- mice fed with a high fat diet were used for detecting the aorta arch atherosclerotic plaques by 7.0-T MRI at 16 and 24 weeks. Ten mice in the targeted group were injected with anti-tenascin-C-USPIO and another ten in the control group were injected with pure USPIO (n = 5 each time point in each group). Histopathologic examination was used to evaluate the plaques and immunohistochemistry analysis was used to compare tenascin-C expression. RESULTS: The relative signal intensity (rSI) changes of the targeted group decreased more than those of the control group (16 weeks: -15.65 ± 0.78% vs. -3.43 ± 2.57%; 24 weeks: -26.38 ± 1.54% vs. -11.12 ± 1.60%, respectively; P < 0.05). Histopathological analyses demonstrated visible atherosclerotic plaques formation and development over time from 16 weeks to 24 weeks. Tenascin-C expression of the plaques at 24 weeks was higher than that at 16 weeks (0.22 ± 0.04 vs. 0.13 ± 0.02, P < 0.05). The MR images correlated well with the progression of atherosclerotic plaques. CONCLUSION: Tenascin-C expression increased with the progression of atherosclerosis. Anti-tenascin-C-USPIO could provide a useful molecular imaging tool for detecting and monitoring atherosclerotic plaques by MRI.


Assuntos
Aterosclerose/diagnóstico por imagem , Meios de Contraste , Dextranos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Tenascina , Animais , Apolipoproteínas E/deficiência , Modelos Animais de Doenças , Aumento da Imagem/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/diagnóstico por imagem
18.
Mol Cell Neurosci ; 78: 25-34, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864037

RESUMO

The inflammatory response following traumatic brain injury (TBI) is regulated by phagocytic cells. These cells comprising resident microglia and infiltrating macrophages play a pivotal role in the interface between early detrimental and delayed beneficial effects of inflammation. The aim of the present study was to monitor the early effect of monocyte/phagocytic accumulation and further to explore its kinetics in TBI mice. Localized macrophage population was monitored using ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle enhanced in vivo serial magnetic resonance imaging (MRI). Flow cytometry based gating study was performed to discriminate between resident microglia (Ly6G-CD11b+CD45low) and infiltrating macrophages (Ly6G-CD11b+CD45high) at the injury site. The T2* relaxation analysis revealed that maximum macrophage infiltration occurs between 66 and 72h post injury (42-48h post administration of USPIO) at the site of inflammation. This imaging data was well supported by iron oxide specific Prussian blue staining and macrophage specific F4/80 immunohistochemistry (IHC) analysis. Quantitative real-time PCR analysis found significant expression of monocyte chemoattractant protein-1 (MCP-1) at 72h post injury. Also, we found that flow cytometric analysis demonstrated a 7-fold increase in infiltrating macrophages around 72h post injuries as compared to control. The MR imaging in combination with flow cytometric analysis enabled the dynamic measurement of macrophage infiltration at the injury site. This study may help in setting an optimal time window to intervene and prevent damage due to inflammation and to increase the therapeutic efficacy.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Movimento Celular , Macrófagos/fisiologia , Animais , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C
19.
Magn Reson Med ; 77(2): 814-825, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26918893

RESUMO

PURPOSE: To assess the feasibility of acquiring vessel size imaging (VSI) metrics using ferumoxytol injections and stock pulse sequences in a multicenter Phase I trial of a novel therapy in patients with advanced metastatic disease. METHODS: Scans were acquired before, immediately after, and 48 h after injection, at screening and after 2 weeks of treatment. ΔR2 , ΔR2*, vessel density (Q), and relative vascular volume fractions (VVF) were estimated in both normal tissue and tumor, and compared with model-derived theoretical and experimental estimates based on preclinical murine xenograft data. RESULTS: R2 and R2* relaxation rates were still significantly elevated in tumors and liver 48 h after ferumoxytol injection; liver values returned to baseline by week 2. Q was relatively insensitive to changes in ΔR2*, indicating lack of dependence on contrast agent concentration. Variability in Q was higher among human tumors compared with xenografts and was mostly driven by ΔR2 . Relative VVFs were higher in human tumors compared with xenografts, while values in muscle were similar between species. CONCLUSION: Clinical ferumoxytol-based VSI is feasible using standard MRI techniques in a multicenter study of patients with lesions outside of the brain. Ferumoxytol accumulation in the liver does not preclude measurement of VSI parameters in liver metastases. Magn Reson Med 77:814-825, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Meios de Contraste/metabolismo , Óxido Ferroso-Férrico/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Animais , Humanos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias Experimentais/diagnóstico por imagem
20.
J Magn Reson Imaging ; 45(3): 804-812, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27480885

RESUMO

PURPOSE: To summarize our single-center safety experience with the off-label use of ferumoxytol for magnetic resonance imaging (MRI) and to compare the effects of ferumoxytol on monitored physiologic indices in patients under anesthesia with those of gadofosveset trisodium. MATERIALS AND METHODS: Consecutive patients who underwent ferumoxytol-enhanced (FE) MRI exams were included. Adverse events (AEs) were classified according to the Common Terminology Criteria for Adverse Events v4.0. In a subgroup of patients examined under general anesthesia, recording of blood pressure, heart rate, oxygen saturation, and end-tidal CO2 was performed. A comparable group of 23 patients who underwent gadofosveset-enhanced (GE) MRI under anesthesia with similar monitoring was also analyzed. RESULTS: In all, 217 unique patients, ages 3 days to 94 years, underwent FE-MRI. No ferumoxytol-related severe, life-threatening, or fatal AEs occurred acutely or at follow-up. Two patients developed ferumoxytol-related nausea. Between-group (FE- vs. GE-MRI) comparisons showed no statistical difference in heart rate (P = 0.69, 95% confidence interval [CI] 96-113 bpm), mean arterial blood pressure (MAP) (P = 0.74, 95% CI 44-52 mmHg), oxygen saturation (P = 0.76, 95% CI 94-98%), and end-tidal CO2 (P = 0.73, 95% CI 31-37 mmHg). No significant change in MAP (P = 0.12, 95% CI 50-58 mmHg) or heart rate (P = 0.25, 95% CI 91-105 bpm) was noted between slow infusion of ferumoxytol (n = 113) vs. bolus injection (n = 104). CONCLUSION: In our single-center experience, no serious AEs occurred with the diagnostic use of ferumoxytol across a wide spectrum of age, renal function, and indications. Because of the limited sample size, firm conclusions cannot be drawn about the generalizability of our results. Thus, vigilance and monitoring are recommended to mitigate potential rare adverse reactions. LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017;45:804-812.


Assuntos
Meios de Contraste , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Óxido Ferroso-Férrico , Imageamento por Ressonância Magnética/estatística & dados numéricos , Uso Off-Label/estatística & dados numéricos , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Los Angeles/epidemiologia , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA