Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 177: 264-70, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27107952

RESUMO

Photocatalytic water treatment has a currently elevated electricity demand and maintenance costs, but the photocatalytic water treatment may also assist in overcoming the limitations and drawbacks of conventional water treatment processes. Among the Advanced Oxidation Processes, heterogeneous photocatalysis is one of the most widely and efficiently used processes to degrade and/or remove a wide range of polluting compounds. The goal of this work was to find out a highly efficient photocatalytic disinfection process in superficial water with different doped photocatalysts and using three sources of radiation: mercury vapor lamp, solar simulator and UV-A LED. Three doped photocatalysts were prepared, SiZnO, NSiZnO and FNSiZnO. The inactivation efficiency of each synthesized photocatalysts was compared to a TiO2 P25 (Degussa(®)) 0.5 g L(-1) control. Photolysis inactivation efficiency was 85% with UV-A LED, which is considered very high, demanding low electricity consumption in the process, whereas mercury vapor lamp and solar simulator yielded 19% and 13% inactivation efficiency, respectively. The best conditions were found with photocatalysts SiZnO, FNSiZnO and NSiZnO irradiated with UV-A LED, where efficiency exceeded 95% that matched inactivation of coliforms using the same irradiation and photocatalyst TiO2. All photocatalysts showed photocatalytic activity with all three radiation sources able to inactivate total coliforms from river water. The use of UV-A LED as the light source without photocatalyst is very promising, allowing the creation of cost-effective and highly efficient water treatment plants.


Assuntos
Enterobacteriaceae/efeitos da radiação , Raios Ultravioleta , Purificação da Água/métodos , Catálise , Desinfecção/métodos , Enterobacteriaceae/isolamento & purificação , Oxirredução , Fotólise , Luz Solar , Titânio/química , Óxido de Zinco/química
2.
Environ Pollut ; 304: 119224, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35351592

RESUMO

Legionella species are the etiological agent of Legionnaires' disease, a pathology easily contracted from water circuits and by the inhalation of aerosol droplets. This bacterium mainly proliferates in water: Legionella pneumophila is the most commonly isolated specie in water environments and consequently in water system, although further Legionella species have frequently been isolated, including Legionella dumoffii. The simultaneous presence of the two species in the water system can therefore lead to the simultaneous infection of several people, giving rise to harmful outbreaks. Ultraviolet inactivation of waterborne microorganisms offers a rapid and effective treatment technique and recently is getting more attention mostly to eliminate unsafe level of contamination. To tackle the issue, the inactivation of the two species of Legionella spp., namely L. pneumophila and L. dumoffii, by means of UV-A light emitting diodes (UV-A LED) system is explored. We used a commercially available UV-A LED at 365 nm wavelength, and the UV-A dose is given incrementally to the Legionellae with a concentration of 106 CFU/mL in 0.9% NaCl (aq) solution. In this study, with a UV-A-dose of 1700 mJ/cm2, the log-reduction of 3-log (99.9% inactivation) for L. pneumophila and 2.1-log (99.1% inactivation) for L. dumoffii of the contaminated water are achieved. The Electrical Energy per Order (EEO) is evaluated and showed this system is more economic and efficient in comparison with UV-C and UV-B LEDs. Following the support of this preliminary study with additional tests, aiming to validate the technology, we expect this device may be installed in water plants such as cooling systems or any water purification station in either industrial or home scales to reduce the risk of this infectious disease, preventing consumers' health.


Assuntos
Legionella pneumophila , Doença dos Legionários , Desinfecção/métodos , Humanos , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , Água , Microbiologia da Água
3.
Sci Total Environ ; 770: 145299, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33736410

RESUMO

The occurrence of micropollutants (MPs) in the aquatic environment poses a threat to the environment and to the human health. The application of sulfate radical-based advanced oxidation processes (SR-AOPs) to eliminate these contaminants has attracted attention in recent years. In this work, the simultaneous degradation of 20 multi-class MPs (classified into 5 main categories, namely antibiotics, beta-blockers, other pharmaceuticals, pesticides, and herbicides) was evaluated for the first time in secondary treated wastewater, by activating peroxymonosulfate (PMS) with UV-A radiation, without any pH adjustment or iron addition. The optimal PMS concentration to remove the spiked target MPs (100 µg L-1) from wastewater was 0.1 mM, leading to an average degradation of 80% after 60 min, with most of the elimination occurring during the first 5 min. Synergies between radiation and the oxidant were demonstrated and quantified, with an average extent of synergy of 69.1%. The optimized treatment was then tested using non-spiked wastewater, in which 12 out of the 20 target contaminants were detected. Among these, 7 were degraded at some extent, varying from 10.7% (acetamiprid) to 94.4% (ofloxacin), the lower removals being attributed to the quite inferior ratio of MPs to natural organic matter. Phytotoxicity tests carried out with the wastewater before and after photo-activated PMS oxidation revealed a decrease in the toxicity and that the plants were able to grow in the presence of the treated water. Therefore, despite the low degradation rates obtained for some MPs, the treatment effectively reduces the toxicity of the matrix, making the water safer for reuse.

4.
J Hazard Mater ; 380: 120882, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31330389

RESUMO

The photo-Fenton process, with UV-A LED (λ = 380-390, 390-400 and 380-400 nm) has demonstrated to be effective in the abatement of a target micropollutant, such as diphenhydramine hydrochloride (DPH). Different concentrations of iron (Fe2+) and H2O2 were tested and monitored, and the best results in DPH removal were obtained for the highest concentrations of both iron (II) and H2O2 (10 mg Fe2+/L - 150 mg H2O2/L). The evolution of iron and peroxide concentration was also monitored. Kinetic studies showed that dark Fenton process prevails at the beginning of the experiment, when Fe2+ concentration is higher. However, after these initial moments, the prevailing process is photo-Fenton and, in addition, wavelength radiation plays an important role. Concerning the effect of radiation, four LEDs (4.2 W total power) were used, emitting radiation in the wavelength range between 380-390 or 390-400 nm. Similar results were obtained in both cases in DPH removal by photo-Fenton (30 min for total elimination). However, a synergistic effect was observed when two LEDs of 380-390 nm and two LEDs of 390-400 nm were used. Total power was the same (4.2 W) in each experimental condition, but the increase in the wavelength range to 20 nm (380-400 nm) produces an increase in the rate of DPH removal, achieving its total elimination at 15 min. This fact, with the use of a simple radiation model, reveals the important role that radiation plays in the photo-Fenton process. Finally, the formed intermediates were determined and some reaction pathways were proposed.

5.
Water Res ; 123: 113-123, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28651081

RESUMO

Freshwater disinfection using photolytic and catalytic activation of peroxymonosulphate (PMS) through PMS/UV-A LED and PMS/Mn+/UV-A LED [Mn+ = Fe2+ or Co2+] processes was evaluated through the inactivation of three different bacteria: Escherichia coli (Gram-negative), Bacillus mycoides (sporulated Gram-positive), Staphylococcus aureus (non-sporulated Gram-positive), and the fungus Candida albicans. Photolytic and catalytic activation of PMS were effective in the total inactivation of the bacteria using 0.1 mM of PMS and Mn+ at neutral pH (6.5), with E. coli reaching the highest and the fastest inactivation yield, followed by S. aureus and B. mycoides. With B. mycoides, the oxidative stress generated through the complexity of PMS/Mn+/UV-A LED combined treatments triggered the formation of endospores. The treatment processes were also effective in the total inactivation of C. albicans, although, due to the ultrastructure, biochemistry and physiology of this yeast, higher dosages of reagents (5 mM of PMS and 2.5 mM of Mn+) were required. The rate of microbial inactivation markedly increased through catalytic activation of PMS particularly during the first 60 s of treatment. Co2+ was more effective than Fe2+ to catalyse PMS decomposition to sulphate radicals for the inactivation of S. aureus and C. albicans. The inactivation of the four microorganisms was well represented by the Hom model. The Biphasic and the Double Weibull models, which are based on the existence of two microbial sub-populations exhibiting different resistance to the treatments, also fitted the experimental results of photolytic activation of PMS.


Assuntos
Desinfecção , Escherichia coli , Água Doce , Staphylococcus aureus , Raios Ultravioleta
6.
Chemosphere ; 145: 351-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26692512

RESUMO

This work reports the treatment of crystallized-fruit effluents, characterized by a very low biodegradability (BOD5/COD <0.19), through the application of a UV-A LED photo-Fenton process. Firstly, a Box-Behnken design of Response Surface Methodology was applied to achieve the optimal conditions for the UV-A LED photo-Fenton process, trying to maximize the efficiency by saving chemicals and time. Under the optimal conditions ([H2O2] = 5459 mg/L; [Fe(3+)] = 286 mg/L; time >180 min), a COD removal of 45, 64 and 74% was achieved after 360 min, using an irradiance of 23, 70 and 85 W/m(2) respectively. Then a combination of UV-A LED photo-Fenton with coagulation-flocculation-decantation attained a higher COD removal (80%), as well as almost total removal of turbidity (99%) and total suspended solids (95%). Subsequent biodegradability of treated effluents increased, allowing the application of a biological treatment step after the photochemical/CFD with 85 W/m(2).


Assuntos
Frutas , Peróxido de Hidrogênio/química , Ferro/química , Luz , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Bactérias/metabolismo , Cristalização , Floculação , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA