RESUMO
Recent years have seen a lot of interest in mycosporine-like amino acids (MAAs) because of their alleged potential as a natural microbial sunscreen. Since chemical ultraviolet (UV) absorbers are unsafe for long-term usage, the demand for natural UV-absorbing substances has increased. In this situation, MAA is a strong contender for an eco-friendly UV protector. The capacity of MAAs to absorb light in the UV-A (320-400 nm) and UV-B (280-320 nm) range without generating free radicals is potentially relevant in photoprotection. The usage of MAAs for purposes other than photoprotection has now shifted in favor of medicinal applications. Aside from UV absorption, MAAs also have anti-oxidant, anti-inflammatory, wound-healing, anti-photoaging, cell proliferation stimulators, anti-cancer agents, and anti-adipogenic properties. Recently, MAAs application to combat SARS-CoV-2 infection was also investigated. In this review article, we highlight the biomedical applications of MAAs that go beyond photoprotection, which can help in utilizing the MAAs as promising bioactive compounds in both pharmaceutical and cosmetic applications.
Assuntos
Aminoácidos , Raios Ultravioleta , Aminoácidos/metabolismo , Anti-Inflamatórios , Protetores Solares/farmacologia , Protetores Solares/química , Protetores Solares/metabolismo , AntioxidantesRESUMO
Ultraviolet (UV) radiation is a non-ionizing radiation, which has a cytotoxic potential, and it is therefore necessary to protect against it. Human skin is exposed to the longer-wavelength components of UV radiation (UVA and UVB) from the sun. In the present paper, we focused on the study of eight organic UV-absorbing compounds: astragalin, beta-carotene, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, hyperoside, 3-(4-methylbenzylidene)camphor, pachypodol, and trans-urocanic acid, as possible protectives of skin cells against UVA and UVB radiation. Their protective effects on skin cell viability, ROS production, mitochondrial membrane potential, liposomal permeability, and DNA integrity were investigated. Only some of the compounds studied, such as trans-urocanic acid and hyperoside, had a significant effect on the examined hallmarks of UV-induced cell damage. This was also confirmed by an atomic force microscopy study of morphological changes in HaCaT cells or a study conducted on a 3D skin model. In conclusion, hyperoside was found to be a very effective UV-protective compound, especially against UVA radiation. Commonly used sunscreen compounds such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 3-(4-methylbenzylidene)camphor turned out to be only physical UV filters, and pachypodol with a relatively high absorption in the UVA region was shown to be more phototoxic than photoprotective.
Assuntos
Raios Ultravioleta , Ácido Urocânico , Humanos , Raios Ultravioleta/efeitos adversos , Ácido Urocânico/farmacologia , Pele/metabolismo , Protetores Solares/farmacologiaRESUMO
The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments.
Assuntos
Abelmoschus/efeitos da radiação , Flavonoides/efeitos da radiação , Hibiscus/efeitos da radiação , Solanum lycopersicum/efeitos da radiação , Vicia faba/efeitos da radiação , Zea mays/efeitos da radiação , Abelmoschus/fisiologia , Aclimatação , Ritmo Circadiano , Flavonoides/fisiologia , Hibiscus/fisiologia , Solanum lycopersicum/fisiologia , Epiderme Vegetal/fisiologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Luz Solar , Raios Ultravioleta , Vicia faba/fisiologia , Zea mays/fisiologiaRESUMO
KEY MESSAGE: In hulless barley, H 2 S mediated increases in H 2 O 2 induced by putrescine, and their interaction enhanced tolerance to UV-B by maintaining redox homeostasis and promoting the accumulation of UV-absorbing compounds. This study investigated the possible relationship between putrescence (Put), hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) as well as the underlying mechanism of their interaction in reducing UV-B induced damage. UV-B radiation increased electrolyte leakage (EL) and the levels of malondialdehyde (MDA) and UV-absorbing compounds but reduced antioxidant enzyme activities and glutathione (GSH) and ascorbic acid (AsA) contents. Exogenous application of Put, H2S or H2O2 reduced some of the above-mentioned negative effects, but were enhanced by the addition of Put, H2S and H2O2 inhibitors. Moreover, the protective effect of Put against UV-B radiation-induced damage to hulless barley was diminished by DL-propargylglycine (PAG, a H2S biosynthesis inhibitor), hydroxylamine (HT, a H2S scavenger), diphenylene iodonium (DPI, a PM-NADPH oxidase inhibitor) and dimethylthiourea (DMTU, a ROS scavenger), and the effect of Put on H2O2 accumulation was abolished by HT. Taken together, as the downstream component of the Put signaling pathway, H2S mediated H2O2 accumulation, and H2O2 induced the accumulation of UV-absorbing compounds and maintained redox homeostasis under UV-B stress, thereby increasing the tolerance of hulless barley seedlings to UV-B stress.
Assuntos
Hordeum/fisiologia , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Substâncias Protetoras/farmacologia , Putrescina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Alcinos/farmacologia , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Homeostase , Hordeum/efeitos dos fármacos , Hordeum/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Hidroxilamina/farmacologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Oniocompostos/farmacologia , Oxirredução , Estresse Oxidativo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Tioureia/análogos & derivados , Tioureia/farmacologia , Raios UltravioletaRESUMO
Using resilient, self-sustaining plants in urban green spaces enhances environmental and cultural benefits and reduces management costs. We assessed two spontaneous plant species, Linaria vulgaris Mill. and Cichorium intybus L., in four sites from the surrounding urban areas, ranging in altitude from 78 to 1040 m. Protection against UV-B radiation is crucial for plants at higher altitudes, guiding our focus on UV-visible absorption spectra, fluorometric emission spectra, secondary metabolite accumulation, and pigment dynamics in leaves. Our findings revealed a slight increase in UV-absorbing compounds with altitude and species-specific changes in visible spectra. The UV-emission of fluorochromes decreased, while red emission increased with altitude but only in chicory. Polyphenols and flavonoids showed a slight upward trend with altitude. Divergent trends were observed in condensed tannin accumulation, with L. vulgaris decreasing and C. intybus increasing with altitude. Additionally, chicory leaves from higher altitudes (792 and 1040 m) contained significantly lower triterpene concentrations. In L. vulgaris, chlorophyll pigments and carotenoids varied with sites, contrasting with UV absorbance variations. For C. intybus, pigment variation was similar to absorbance changes in the UV and VIS range, except at the highest altitude. These observations provide valuable insights into species-specific strategies for adapting to diverse environmental contexts.
RESUMO
Mycosporines and mycosporine-like amino acids are ultra-violet-absorbing compounds produced by several organisms such as lichens, fungi, algae and cyanobacteria, especially upon exposure to solar ultraviolet radiation. These compounds have photoprotective and antioxidant functions. Mycosporine-like amino acids have been used as a natural bioactive ingredient in cosmetic products. Several reviews have already been developed on these photoprotective compounds, but they focus on specific features. Herein, an extremely complete database on mycosporines and mycosporine-like amino acids, covering the whole class of these natural sunscreen compounds known to date, is presented. Currently, this database has 74 compounds and provides information about the chemistry, absorption maxima, protonated mass, fragments and molecular structure of these UV-absorbing compounds as well as their presence in organisms. This platform completes the previous reviews and is available online for free and in the public domain. This database is a useful tool for natural product data mining, dereplication studies, research working in the field of UV-absorbing compounds mycosporines and being integrated in mass spectrometry library software.
RESUMO
The aim of our study was to assess the combined impact of UVR (280-400 nm) and temperature on the first larval stage (Zoea I) of three crab species from the Patagonian coast: Cyrtograpsus altimanus, C. angulatus, and Leucippa pentagona. We determined the survival response of newly hatched Zoea I after being exposed for 8-10 h under a solar simulator (Hönle SOL 1200) at 15 and 20 degrees C. There was no mortality due to Photosynthetic Active Radiation (PAR, 400-700 nm) or ultraviolet-A radiation (UV-A, 315-400 nm), and all the observed mortality was due to ultraviolet-B radiation (UV-B, 280-315 nm). The data of larval mortality relative to exposure time was best fit using a sigmoid curve. Based on this curve, a threshold (Th) and the lethal dose for 50% mortality (LD(50)) were determined for each species. Based on the Th and LD(50), C. altimanus was found to be the most resistant species, while L. pentagona was found to be the most sensitive to UV-B. For both species of Cyrtograpsus, mortality was significantly lower at 20 degrees C than at 15 degrees C; however, no significant differences between the two temperature treatments were found in L. pentagona. Bioaccumulation of UV-absorbing compounds in the gonads and larvae of C. altimanus, and to a lesser extent in C. angulatus, might have contributed for counteracting the impact of UV-B. However, most of the resilience to UV-B observed with the increase in temperature might be due to an increase in metabolic activity caused by a repair mechanism mediated by enzymes.
Assuntos
Aminoácidos/análise , Braquiúros/fisiologia , Carotenoides/análise , Protetores contra Radiação/análise , Temperatura , Raios Ultravioleta , Animais , Argentina , Braquiúros/química , Braquiúros/crescimento & desenvolvimento , Braquiúros/efeitos da radiação , Ecossistema , Larva/química , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/efeitos da radiaçãoRESUMO
PREMISE OF THE STUDY: The three-dimensional structure of tree canopies creates environmental heterogeneity, which can differentially influence the chemistry, morphology, physiology, and/or phenology of leaves. Previous studies that subdivide canopy leaves into broad categories (i.e., "upper/lower") fail to capture the differences in microenvironments experienced by leaves throughout the three-dimensional space of a canopy. METHODS: We use a three-dimensional spatial mapping approach based on spherical polar coordinates to examine the fine-scale spatial distributions of photosynthetically active radiation (PAR) and the concentration of ultraviolet (UV)-absorbing compounds (A300) among leaves within the canopies of black mangroves (Avicennia germinans). RESULTS: Linear regressions revealed that interior leaves received less PAR and produced fewer UV-absorbing compounds than leaves on the exterior of the canopy. By allocating more UV-absorbing compounds to the leaves on the exterior of the canopy, black mangroves may be maximizing UV-protection while minimizing biosynthesis of UV-absorbing compounds. DISCUSSION: Three-dimensional spatial mapping provides an inexpensive and portable method to detect fine-scale differences in environmental and biological traits within canopies. We used it to understand the relationship between PAR and A300, but the same approach can also be used to identify traits associated with the spatial distribution of herbivores, pollinators, and pathogens.
RESUMO
Some low or non-UV absorbing compounds like amino acids might be accessible to direct UV detection by capillary electrophoresis (CE), due to the photochemical reaction in the detection window of the separation capillary under extremely strong alkaline conditions. However, with regards to the photochemical reaction procedure and the influencing factors in CE, no comprehensive studies have been done. Herein, two strategies were applied to investigate the photochemical reaction mechanism including the introduction of an additional UV lamp and the utilization of driving pressure. The former confirmed the occurrence of photolysis, while the latter solved the interference of electroosmotic flow (EOF). Furthermore, the online photochemical reaction and online preconcentration technique were combined to develop a rapid, simple and sensitive method for determination of seven essential amino acids (valine, leucine, phenylalanine, methionine, tryptophan, threonine and lysine). Eventually, the developed method was successfully applied to the analysis of real samples with good reproducibility and reliability. This novel and simple method, based on the photochemical reactions occurring in the detection window and coupling with online preconcentration techniques, shows a great potential for the rapid and sensitive detection of low or non-UV absorbing compounds.
RESUMO
The spatial variability of ultraviolet-absorbing compounds (UVACs) in the freshwater liverwort Jungermannia exsertifolia subsp. cordifolia was studied in mid-latitudes (the Atlantic-Mediterranean transition) across a wide lati-altitudinal gradient, with the aim of testing the usefulness of UVACs as biomarkers of current ambient levels of UV radiation. We analysed 17 samples from streams located in the main mountain ranges of the Iberian Peninsula, differentiating methanol-soluble (SUVACs, mainly located in the vacuoles) and methanol-insoluble (IUVACs, bound to cell walls) compounds, since they represent different manners to cope with UV radiation. In both fractions, the bulk level of UVACs and the concentrations of several individual compounds were measured. In addition, we measured Fv/Fm, DNA damage and sclerophylly index (SI) as possible additional UV biomarkers. UVACs showed a high variability, probably due not only to the gradients of macroenvironmental factors (UV radiation, PAR, and water temperature), but also to microenvironmental factors inherent to the dynamic nature of mountain streams. Two soluble coumarins were positively correlated with UV levels and could be used for ambient UV biomonitoring in the spatial scale. In contrast to the variability in UVACs, the relatively homogeneous values of Fv/Fm and the lack of any DNA damage made these variables useless for ambient UV biomonitoring, but suggested a strong acclimation capacity of this liverwort to changing environmental conditions (in particular, to UV levels). Finally, UVACs of fresh samples of the liverwort were compared to those of herbarium samples collected in the same lati-altitudinal gradient. SUVACs were significantly higher in fresh samples, whereas IUVACs generally showed the contrary. Thus, IUVACs were more stable than SUVACs and hence more adequate for retrospective UV biomonitoring. In conclusion, UVAC compartmentation should be taken into account for bryophyte-based UV biomonitoring in future studies.
Assuntos
Hepatófitas/fisiologia , Monitoramento de Radiação/métodos , Raios Ultravioleta , Biomarcadores/metabolismo , Briófitas , Dano ao DNA , Monitoramento AmbientalRESUMO
Solar ultraviolet radiation (UVR, 280-400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV-absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 µM) under different solar radiation treatments with or without UVR. Nitrate-enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet-A radiation (UVA) and ultraviolet-B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60-120 µg UVACs · g(-1) (fwt) when the thalli were grown under nitrate-enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis.