Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3066-3073, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381965

RESUMO

This study aimed to investigate the effect of Wenyang Zhenshuai Granules(WYZSG) on autophagy and apoptosis of myocardial cells in rats with sepsis via regulating the expression of microRNA-132-3p(miR-132-3p)/uncoupling protein 2(UCP2). Sixty SD rats were randomly divided into modeling group(n=50) and sham operation group(n=10). The sepsis rat model was constructed by cecal ligation and perforation in the modeling group. The successfully modeled rats were randomly divided into WYZSG low-, medium-and high-dose groups, model group and positive control group. Rats in the sham operation group underwent opening and cecum division but without perforation and ligation. Hematoxylin-eosin(HE) staining was used to observe the pathological changes of rat myocardial tissue. Myocardial cell apoptosis was detected by TdT-mediated dUTP nick end labeling(TUNEL) assay. Real-time quantitative polymerase chain reaction(RT-qPCR) was performed to detect the expression of miR-132-3p and the mRNA expressions of UCP2, microtubule-associated protein light chain 3(LC3-Ⅱ/LC3-Ⅰ), Beclin-1 and caspase-3 in rat myocardial tissue. The protein expressions of UCP2, LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3 in myocardial tissue were detected by Western blot. Dual luciferase reporter assay was used to verify the regulatory relationship between miR-132-3p and UCP2. The myocardial fibers of sepsis model rats were disordered, and there were obvious inflammatory cell infiltration as well as myocardial cell edema and necrosis. With the increase of the WYZSG dose, the histopathological changes of myocardium were improved to varying degrees. Compared with the conditions in the sham operation group, the survival rate and left ventricular ejection fraction(LVEF) of rats in the model group, positive control group and WYZSG low-, medium-and high-dose groups were decreased, and the myocardial injury score and apoptosis rate were increased. Compared with the model group, the positive control group and WYZSG low-, medium-and high-dose groups had elevated survival rate and LVEF, and lowered myocardial injury score and apoptosis rate. The expression of miR-132-3p and the mRNA and protein expressions of UCP2 in myocardial tissue in the model group, positive control group and WYZSG low-, medium-and high-dose groups were lower, while the mRNA and protein expressions of LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3 were higher than those in the sham operation group. Compared with model group, the positive control group and the WYZSG low-, medium-and high-dose groups had an up-regulation in the expression of miR-132-3p and the mRNA and protein expressions of UCP2, while a down-regulation in the mRNA and protein expressions of LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3. WYZSG inhibited excessive autophagy and apoptosis of myocardial cells in septic rats and improved myocardial injury, possibly by regulating the expression of miR-132-3p/UCP2.


Assuntos
Apoptose , Autofagia , Medicamentos de Ervas Chinesas , Regulação da Expressão Gênica , Miócitos Cardíacos , Animais , Ratos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Medicina Tradicional Chinesa , MicroRNAs/genética , Miócitos Cardíacos/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/fisiopatologia , Proteína Desacopladora 2/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628482

RESUMO

Most of the major retinal degenerative diseases are associated with significant levels of oxidative stress. One of the major sources contributing to the overall level of stress is the reactive oxygen species (ROS) generated by mitochondria. The driving force for ROS production is the proton gradient across the inner mitochondrial membrane. This gradient can be modulated by members of the uncoupling protein family, particularly the widely expressed UCP2. The overexpression and knockout studies of UCP2 in mice have established the ability of this protein to provide neuroprotection in a number of animal models of neurological disease, including retinal diseases. The expression and activity of UCP2 are controlled at the transcriptional, translational and post-translational levels, making it an ideal candidate for therapeutic intervention. In addition to regulation by a number of growth factors, including the neuroprotective factors LIF and PEDF, small molecule activators of UCP2 have been found to reduce mitochondrial ROS production and protect against cell death both in culture and animal models of retinal degeneration. Such studies point to the development of new therapeutics to combat a range of blinding retinal degenerative diseases and possibly other diseases in which oxidative stress plays a key role.


Assuntos
Doenças Neurodegenerativas , Animais , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499405

RESUMO

Despite numerous therapies, cancer remains one of the leading causes of death worldwide due to the lack of markers for early detection and response to treatment in many patients. Technological advances in tumor screening and renewed interest in energy metabolism have allowed us to identify new cellular players in order to develop personalized treatments. Among the metabolic actors, the mitochondrial transporter uncoupling protein 2 (UCP2), whose expression is increased in many cancers, has been identified as an interesting target in tumor metabolic reprogramming. Over the past decade, a better understanding of its biochemical and physiological functions has established a role for UCP2 in (1) protecting cells from oxidative stress, (2) regulating tumor progression through changes in glycolytic, oxidative and calcium metabolism, and (3) increasing antitumor immunity in the tumor microenvironment to limit cancer development. With these pleiotropic roles, UCP2 can be considered as a potential tumor biomarker that may be interesting to target positively or negatively, depending on the type, metabolic status and stage of tumors, in combination with conventional chemotherapy or immunotherapy to control tumor development and increase response to treatment. This review provides an overview of the latest published science linking mitochondrial UCP2 activity to the tumor context.


Assuntos
Neoplasias , Estresse Oxidativo , Humanos , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Metabolismo Energético , Oxirredução , Neoplasias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
4.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409033

RESUMO

Aristolochic acid I (AA I) is one of the most abundant and toxic aristolochic acids that is reported to cause Aristolochic acid nephropathy (AAN). This paper was designed to assess whether mitochondrial Uncoupling Protein 2 (UCP2), which plays an antioxidative and antiapoptotic role, could protect human renal proximal tubular epithelial (HK-2) cells from toxicity induced by AA I. In this study, HK-2 cells were treated with different concentrations of AA I with or without UCP2 inhibitor (genipin). To upregulate the expression of UCP2 in HK-2 cells, UCP2-DNA transfection was performed. The cell viability was evaluated by colorimetric method using MTT. A series of related biological events such as Reactive Oxygen Species (ROS), Glutathione peroxidase (GSH-Px), and Malondialdehyde (MDA) were evaluated. The results showed that the cytotoxicity of AA I with genipin group was much higher than that of AA I alone. Genipin dramatically boosted oxidative stress and exacerbated AA I-induced apoptosis. Furthermore, the increased expression of UCP2 can reduce the toxicity of AA I on HK-2 cells and upregulation of UCP2 expression can reduce AA I-induced oxidative stress and apoptosis. In conclusion, UCP2 might be a potential target for alleviating AA I-induced nephrotoxicity.


Assuntos
Ácidos Aristolóquicos , Apoptose , Ácidos Aristolóquicos/toxicidade , Linhagem Celular , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
5.
Mol Membr Biol ; 35(1): 51-59, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31799876

RESUMO

Background and objective: Renal ischaemia reperfusion injury (IRI), characterized by excessive cell apoptosis and inflammation, remains a clinical challenge. Mitochondrial membrane potential is related to apoptosis and inflammation of IRI. Previous studies have indicated that uncoupling protein 2 (UCP2) and its receptors play an important role in inflammation, apoptosis and injuries, especially in oxidative stress injury. However, the underlying mechanisms of UCP2 in IRI are still not fully understood.Methods and results: In the present study, male C57 mice were randomly divided into three groups:sham, IR, and UCP2-/-+IR. The IRI model was established by removing the right kidney and clamping the left kidney for 45 min followed by reperfusion. Blood urea nitrogen (BUN) and creatinine were higher in UCP2-/-+IR mouse serum than in IR mouse serum. In addition, relative to the IR group, UCP2-/-+IR mouse renal cells had increased reactive oxygen species (ROS) production, aggravating tissue damage. We examined changes in the NFκB pathway and found that after UCP2 knockdown, IκB and IKK phosphorylation increased, and nuclear NFκB increased, which stimulated inflammation. Moreover, there was an increase in apoptosis in the UCP2-/-+IR group.Conclusion: UCP2 can prevent IRI in C57 mice. Mechanistically, UCP2 may decrease ROS expression, NFκB activation and caspase-3 cleavage, rendering UCP2 a potential therapeutic target against IRI.


Assuntos
Nefropatias/metabolismo , Nefropatias/prevenção & controle , NF-kappa B/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais , Proteína Desacopladora 2/metabolismo , Animais , Caspase 3 , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Proteína Desacopladora 2/genética
6.
J Cell Biochem ; 120(2): 2047-2057, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30160798

RESUMO

Genipin, a compound derived from Gardenis jasminoides Ellis fruits, was demonstrated to be the specific uncoupling protein 2 (UCP2) inhibitor. UCP2 is a mitochondrial carrier protein that creates proton leaks across the inner mitochondrial membrane, thus uncoupling oxidative phosphorylation from adenosine triphosphate (ATP) synthesis. Several studies revealed that UCP2 is broadly over-expressed in leukemia, colorectal, lung, ovarian, prostate, testicular, and bladder cancers. However, the effect of genipin still needs to be elucidated in neurological malignancies. In this study, we investigated the anticancer effect of genipin in U87MG and A172 cell lines. The anticancer effect of genipin on these cell lines was measured by microculture tetrazoliumtest (MTT), Trypan blue exclusion, and colony formation assays, in the presence of various concentrations of genipin at different time intervals. We assessed apoptosis and measure intracellular reactive oxygen species (ROS) by flow cytometry. Expression of UCP2 and some of the genes involved in apoptosis was analyzed by real-time quantitative polymerase chain reaction (PCR). Results of the MTT assay showed that genipin moderately reduced metabolic activity of both cell lines in dose- and time-dependent manner. Result of Trypan blue exclusion test indicated that the viable cell count decreased in the treated group in a concentration-dependent manner. Genipin also significantly decreased colony formation ability of these cells in a concentration-dependent manner. Result of morphological changes showed that there were significant differences in cell number and morphology in treated groups as compared with the untreated groups. Flow cytometric analysis of U87MG and A172 cells with annexin V/propidium iodide staining, 48 hours after treatment with genipin, displays 22.4% and 26.1% apoptotic population, respectively, in treated cells, in comparison to 7.42% and 9.31% apoptotic cells of untreated cells. After treatment, UCP2 and B-cell lymphoma 2 (BCL 2 ) genes are downregulated, and BCL 2 associated X protein, BCL 2 antagonist/killer, BCL 2 interacting killer, and Cytochrome c genes are upregulated. Genipin treatment increased mitochondrial ROS levels and also induced apoptosis through caspase-3 upregulation. In conclusion, the antiproliferative effects of genipin on the growth of both glioblastoma cell lines have been shown in all of these assays, and genipin profoundly induced apoptosis in both cell lines via the UCP2-related mitochondrial pathway through the induction of intracellular ROS.

7.
Int J Mol Sci ; 18(7)2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28737710

RESUMO

Recovered blood supply after cerebral ischemia for a certain period of time fails to restore brain function, with more severe dysfunctional problems developing, called cerebral ischemia-reperfusion injury (CIR). CIR involves several extremely complex pathophysiological processes in which the interactions between key factors at various stages have not been fully elucidated. Mitochondrial dysfunction is one of the most important mechanisms of CIR. The mitochondrial deacetylase, sirtuin 3 (SIRT3), can inhibit mitochondrial oxidative stress by deacetylation, to maintain mitochondrial stability. Uncoupling protein 2 (UCP2) regulates ATP (Adenosine triphosphate) and reactive oxygen species production by affecting the mitochondrial respiratory chain, which may play a protective role in CIR. Finally, we propose that UCP2 regulates the activity of SIRT3 through sensing the energy level and, in turn, maintaining the mitochondrial steady state, which demonstrates a cytoprotective effect on CIR.


Assuntos
Encefalopatias/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Traumatismo por Reperfusão/metabolismo , Sirtuína 3/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Encefalopatias/patologia , Humanos , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia
8.
J Transl Med ; 14(1): 177, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27301474

RESUMO

BACKGROUND: It has been suggested that dietary modifications in combination with genetic predisposition play an important role in the pathogenesis of NAFLD. In the current study we aimed to investigate the major components of metabolic syndrome in patients with non-alcoholic fatty liver disease (NAFLD) and nutritional intakes according to different genotype of uncoupling protein-2 (UCP2) -866G/A gene polymorphism in these patients. METHODS: In this study 151 participants including 75 patients with NAFLD and 76 healthy individuals were enrolled. Dietary intakes were assessed using a semi-quantitative food-frequency questionnaire. Physical activity was obtained by metabolic equivalent questionnaire. Anthropometric assessments were conducted by a trained researcher and body mass index and waist to hip ratio were calculated. Body composition was measured by bioelectrical impedance analysis and biochemical assays including fasting serum glucose, liver enzymes and lipid profiles were measured. Polymorphisms of -866G/A UCP2 gene was determined using polymerase chain reaction-restriction fragment length polymorphism method. RESULTS: Serum triglyceride concentrations in 53.3 % of NAFLD patients compared with 35.5 % of control group was more than 150 mg/dl (P = 0.034). A significantly higher prevalence of low serum high density lipoprotein cholesterol concentrations was also observed in female NAFLD patients (P < 0.001). Dietary intakes in NAFLD group were not significantly different compared with control group (P > 0.05). However, according to genotypes patients with AG genotype had significantly higher protein consumption compared with control group (P < 0.05). Significantly higher consumption of dietary iron and copper in NAFLD patients with AG genotype was only observed among patients with NAFLD. However, the comparison of macro and micronutrient intakes in control group sound for stronger differences for AA genotype although these differences did not achieve significant threshold. CONCLUSIONS: A high prevalence of metabolic abnormalities was reported among NAFLD patients. Additionally, among NAFLD group, patients with AG genotype significantly consumed more protein, iron and copper in their usual diet.


Assuntos
Síndrome Metabólica/complicações , Síndrome Metabólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Estado Nutricional/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína Desacopladora 2/genética , Adulto , Ingestão de Energia , Feminino , Genótipo , Humanos , Masculino , Micronutrientes/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Prevalência
9.
Biochem J ; 468(3): 401-7, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26173235

RESUMO

Although the protease inhibitor (PI) Lopimune has proven to be effective, no studies have examined the side effects of Lopimune on mitochondrial bioenergetics in hepatocytes. The objective of the present study is to evaluate mitochondrial respiration, production of reactive oxygen species (ROS) and expression of uncoupling protein-2 (UCP2) in mouse hepatocytes following Lopimune administration. Mitochondria were extracted from mouse liver using differential centrifugation and hepatocytes were isolated by the collagenase perfusion procedure. Mitochondrial respiration was measured using a Rank Brothers oxygen electrode. ROS production in hepatocytes was monitored by flow cytometry using a 2',7'-dichlorofluorescin diacetate probe and UCP2 protein expression was detected by Western blotting. We found that Lopimune induced a significant decrease of approximately 30% in the respiratory control ratio (RCR) starting from day 4 until day 9 of treatment. This decrease was due to an increase in state 4 respiration, reflecting an increase in mitochondrial proton leak. State 2 and state 3 respirations were not affected. Moreover, ROS production significantly increased by about 2-fold after day 1 of treatment and decreased after day 3, returning to the resting level on day 5. Interestingly, UCP2 which is absent from control hepatocytes, was expressed starting from day 4 of treatment. Our findings indicate that Lopimune-induced proton leak, mediated by UCP2, may represent a response to inhibit the production of ROS as a negative feedback regulatory mechanism. These results imply a potential involvement of UCP2 in the regulation of oxidative stress and add new insights into the understanding of mitochondrial toxicity induced by PIs.


Assuntos
Inibidores da Protease de HIV/farmacologia , Hepatócitos/efeitos dos fármacos , Canais Iônicos/agonistas , Lopinavir/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas Mitocondriais/agonistas , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ritonavir/farmacologia , Animais , Western Blotting , Células Cultivadas , Combinação de Medicamentos , Guanosina Difosfato/metabolismo , Inibidores da Protease de HIV/efeitos adversos , Hepatócitos/citologia , Hepatócitos/metabolismo , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Cinética , Lopinavir/efeitos adversos , Camundongos Endogâmicos BALB C , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ritonavir/efeitos adversos , Proteína Desacopladora 2
10.
Biochem Biophys Res Commun ; 460(4): 938-43, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25839656

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by the constitutive up-regulation of the hypoxia inducible factor-1. One of its target enzymes, pyruvate dehydrogenase (PDH) kinase 1 (PDHK1) showed increased protein expression in tumor as compared to patient-matched normal tissues. PDHK1 phosphorylated and inhibited PDH whose enzymatic activity was severely diminished, depriving the TCA cycle of acetylCoA. We and others have shown a decrease in the protein expressions of all respiratory complexes alluding to a compromise in oxidative phosphorylation (OXPHOS). On the contrary, we found that key parameters of OXPHOS, namely ATP biosynthesis and membrane potential were consistently measurable in mitochondria isolated from ccRCC tumor tissues. Interestingly, an endogenous mitochondrial membrane potential (MMP) was evident when ADP was added to mitochondria isolated from ccRCC but not in normal tissues. In addition, the MMP elicited in the presence of ADP by respiratory substrates namely malate/glutamate, succinate, α-ketoglutarate and isocitrate was invariably higher in ccRCC. Two additional hallmarks of ccRCC include a loss of uncoupling protein (UCP)-2 and an increase in UCP-3. Based on our data, we proposed that inhibition of UCP3 by ADP could contribute to the endogenous MMP observed in ccRCC and other cancer cells.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Western Blotting , Carcinoma de Células Renais/enzimologia , Humanos , Neoplasias Renais/enzimologia , Metaloproteinases da Matriz/metabolismo , Fosforilação Oxidativa , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil
11.
Front Cell Dev Biol ; 9: 674939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277616

RESUMO

During the process of vertebrate evolution, many thermogenic organs and mechanisms have appeared. Mammalian brown adipose tissue (BAT) generates heat through the uncoupling oxidative phosphorylation of mitochondria, acts as a natural defense against hypothermia and inhibits the development of obesity. Although the existence, cellular origin and molecular identity of BAT in humans have been well studied, the genetic and functional characteristics of BAT from lampreys remain unknown. Here, we identified and characterized a novel, naturally existing brown-like adipocytes at the lamprey brain periphery. Similar to human BAT, the lamprey brain periphery contains brown-like adipocytes that maintain the same morphology as human brown adipocytes, containing multilocular lipid droplets and high mitochondrion numbers. Furthermore, we found that brown-like adipocytes in the periphery of lamprey brains responded to thermogenic reagent treatment and cold exposure and that lamprey UCP2 promoted precursor adipocyte differentiation. Molecular mapping by RNA-sequencing showed that inflammation in brown-like adipocytes treated with LPS and 25HC was enhanced compared to controls. The results of this study provide new evidence for human BAT research and demonstrate the multilocular adipose cell functions of lampreys, including: (1) providing material energy and protecting structure, (2) generating additional heat and contributing to adaptation to low-temperature environments, and (3) resisting external pathogens.

12.
Ann Transl Med ; 9(3): 259, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708886

RESUMO

BACKGROUND: Mitochondrial dysfunction plays an important role in the development of septic cardiomyopathy. This study aimed to reveal the protective role of uncoupling protein 2 (UCP2) in mitochondria through AMP-activated protein kinase (AMPK) on autophagy during septic cardiomyopathy. METHODS: UCP2 knockout mice via a cecal ligation and puncture (CLP) model and the H9C2 cardiomyocyte cell line in response to lipopolysaccharide (LPS) in vitro were used to study the effect. The myocardial morphological alterations, indicators of mitochondrial injury and levels of autophagy-associated proteins (pAMPK, pmTOR, pULK1, pTSC2, Beclin-1, and LC3-I/II) were assessed. In addition, the mechanism of the interaction between UCP2 and AMPK was further studied through gain- and loss-of-function studies. RESULTS: Compared with the wild-type mice, the UCP2 knockout mice exhibited more severe cardiomyocyte injury after CLP, and the AMPK agonist AICAR protected against such injury. Consistent with this result, silencing UCP2 augmented the LPS-induced pathological damage and mitochondrial injury in the H9C2 cells, limited the upregulation of autophagy proteins and reduced AMPK phosphorylation. AICAR protected the cells from morphological changes and mitochondrial membrane potential loss and promoted autophagy. The silencing and overexpression of UCP2 led to correlated changes in the AMPK upstream kinases pLKB1 and CAMKK2. CONCLUSIONS: UCP2 exerts cardioprotective effects on mitochondrial dysfunction during sepsis via the action of AMPK on autophagy.

13.
Front Oncol ; 11: 640720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763373

RESUMO

Glioblastoma (GBM) remains one of the most lethal primary brain tumors in both adult and pediatric patients. Targeting tumor metabolism has emerged as a promising-targeted therapeutic strategy for GBM and characteristically resistant GBM stem-like cells (GSCs). Neoplastic cells, especially those with high proliferative potential such as GSCs, have been shown to upregulate UCP2 as a cytoprotective mechanism in response to chronic increased reactive oxygen species (ROS) exposure. This upregulation plays a central role in the induction of the highly glycolytic phenotype associated with many tumors. In addition to shifting metabolism away from oxidative phosphorylation, UCP2 has also been implicated in increased mitochondrial Ca2+ sequestration, apoptotic evasion, dampened immune response, and chemotherapeutic resistance. A query of the CGGA RNA-seq and the TCGA GBMLGG database demonstrated that UCP2 expression increases with increased WHO tumor-grade and is associated with much poorer prognosis across a cohort of brain tumors. UCP2 expression could potentially serve as a biomarker to stratify patients for adjunctive anti-tumor metabolic therapies, such as glycolytic inhibition alongside current standard of care, particularly in adult and pediatric gliomas. Additionally, because UCP2 correlates with tumor grade, monitoring serum protein levels in the future may allow clinicians a relatively minimally invasive marker to correlate with disease progression. Further investigation of UCP2's role in metabolic reprogramming is warranted to fully appreciate its clinical translatability and utility.

14.
Rep Biochem Mol Biol ; 10(1): 119-125, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34277875

RESUMO

BACKGROUND: Obesity is a multifactorial metabolic disease resulting from behavioral and genetic factors. Obesity is linked to diabetes mellitus and hypertension, which are considered as major risk factors for chronic kidney disease (CKD); moreover, it has a direct effect on developing CKD and end stage renal disease (ESRD). Here was aimed to examine the association between uncoupling protein 2 (UCP2) gene expression and obesity in CKD patients. METHODS: UCP2 gene expression was analyzed by real time polymerase chain reaction (RT-PCR) in 93 participants divided into three groups. The groups included 31 non-obese CKD patients, 31 obese CKD patients, and 31 healthy, age-matched, unrelated volunteers as a control group. RESULTS: UCP2 gene expression was significantly relevant when comparing the non-obese CKD and obese CKD groups to the control group (p< 0.001). No significant association was found when the groups were compared by gender; Chi-square (X2) was 2.38 and p= 0.304. A significant negative correlation was found between UCP2 gene expression and BMI in CKD (p< 0.05). CONCLUSION: These results indicate that UCP2 gene expression plays a significant role as a risk factor for obesity in CKD patients.

15.
Cancer Chemother Pharmacol ; 88(4): 633-642, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34146128

RESUMO

PURPOSE: This study aimed to investigate the possibility of UCP-2 inhibitor in reducing acquired resistance of trastuzumab to improve the outcome of patients receiving trastuzumab therapy by exploring the relationship between UCP-2 expression and HER2 signaling pathway and examining whether UCP-2 expression was modulated by trastuzumab treatment. METHODS: 32 women diagnosed with primary HER2-positive breast cancer were recruited in this study. Needle biopsy was obtained from patients before they received at least four cycles neoadjuvant therapy containing trastuzumab in combination with chemotherapy. Surgical tumor biopsy was obtained during surgical procedure after the neoadjuvant therapy. Levels of HER2 phosphorylation and UCP-2 expression were detected by immunohistochemistry (IHC) and compared between tumor needle biopsy tissue and surgical tumor samples of these patients, as well as in BT474 breast cancer cells before and after trastuzumab treatment. HER2-selective phosphorylation/kinase activity inhibitor ONT-380 was used to identify the correlation between HER2 phosphorylation level and UCP-2 expression. UCP-2 inhibitor Genipin was then used to evaluate the apoptosis index in BT474 cells treated with trastuzumab. RESULTS: UCP-2 expression was significantly elevated in surgical tumor samples from breast cancer patients receiving trastuzumab in a neoadjuvant setting. We further confirmed our findings in HER2-positive BT474 cell line and found that trastuzumab treatment induced phosphorylation of HER2 and the overexpression of UCP-2, and the latter can be reversed by HER2 selective kinase inhibitor ONT-380. Moreover, UCP-2 inhibitor Genipin significantly enhanced the proliferation suppression effects of trastuzumab and markedly promoted apoptosis. CONCLUSION: Taken together, our study identified UCP-2 as a novel therapeutic target for HER2 positive breast cancer and UCP-2 inhibitor may have great potential to enhance the response rate and efficacy of trastuzumab therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/metabolismo , Proteína Desacopladora 2/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Iridoides/administração & dosagem , Terapia Neoadjuvante , Oxazóis/administração & dosagem , Piridinas/administração & dosagem , Quinazolinas/administração & dosagem , Trastuzumab/administração & dosagem
16.
ACS Appl Mater Interfaces ; 13(34): 40200-40213, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410709

RESUMO

For their remarkable biomimetic properties implying strong modulation of the intracellular and extracellular redox state, cerium oxide nanoparticles (also termed "nanoceria") were hypothesized to exert a protective role against oxidative stress associated with the harsh environmental conditions of spaceflight, characterized by microgravity and highly energetic radiations. Nanoparticles were supplied to proliferating C2C12 mouse skeletal muscle cells under different gravity and radiation levels. Biological responses were thus investigated at a transcriptional level by RNA next-generation sequencing. Lists of differentially expressed genes (DEGs) were generated and intersected by taking into consideration relevant comparisons, which led to the observation of prevailing effects of the space environment over those induced by nanoceria. In space, upregulation of transcription was slightly preponderant over downregulation, implying involvement of intracellular compartments, with the majority of DEGs consistently over- or under-expressed whenever present. Cosmic radiations regulated a higher number of DEGs than microgravity and seemed to promote increased cellular catabolism. By taking into consideration space physical stressors alone, microgravity and cosmic radiations appeared to have opposite effects at transcriptional levels despite partial sharing of molecular pathways. Interestingly, gene ontology denoted some enrichment in terms related to vision, when only effects of radiations were assessed. The transcriptional regulation of mitochondrial uncoupling protein 2 in space-relevant samples suggests perturbation of the intracellular redox homeostasis, and leaves open opportunities for antioxidant treatment for oxidative stress reduction in harsh environments.


Assuntos
Antioxidantes/farmacologia , Cério/farmacologia , Nanopartículas Metálicas/química , Fibras Musculares Esqueléticas/efeitos dos fármacos , Animais , Antioxidantes/química , Linhagem Celular , Cério/química , Radiação Cósmica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Gravitação , Camundongos , Fibras Musculares Esqueléticas/efeitos da radiação , Transcriptoma/efeitos dos fármacos , Transcriptoma/efeitos da radiação , Proteína Desacopladora 2/metabolismo
17.
Curr Stem Cell Res Ther ; 16(3): 231-237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32564762

RESUMO

Pluripotent Stem Cells [PSCs] are emerging as an excellent cellular source for the treatment of many degenerative diseases such as diabetes, ischemic heart failure, Alzheimer's disease, etc. PSCderived pancreatic islet ß-cells appear to be a promising therapy for type 1 diabetic patients with impaired ß-cell function. Several protocols have been developed to derive ß-cells from PSCs. However, these protocols produce ß-like cells that show low glucose stimulated insulin secretion (GSIS) function and mirror GSIS profile of functionally immature neonatal ß-cells. Several studies have documented a positive correlation between the sirtuins (a family of ageing-related proteins) and the GSIS function of adult ß-cells. We are of the view that the GSIS function of PSC-derived ß-like cells could be enhanced by improving the function of sirtuins in them. Studying the sirtuin expression and activation pattern during the ß-cell development and inclusion of the sirtuin activators and inhibitor cocktail (specific to a developmental stage) in the present protocols may help us derive functionally mature, ready-to-use ß- cells in-vitro making them suitable for transplantation in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Células-Tronco Pluripotentes , Diabetes Mellitus Tipo 1/terapia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Células-Tronco Pluripotentes/citologia
18.
Phytomedicine ; 53: 171-181, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30668396

RESUMO

BACKGROUND: Although the protective effects of Yiqi-Huoxue granule (YQHX), a Chinese 4-herb formula, on patients with ischemic heart diseases are related to the attenuation of oxidative stress injury, the mechanism(s) underlying these actions remains poorly understood. PURPOSE: Our aim was to investigate the potential protective effects of YQHX treatment against oxidative stress induced by hydrogen peroxide (H2O2) in rat H9c2 cells. METHODS: H9c2 cells were treated with YQHX for 16 h before exposed to 200 µM H2O2 for 6 h. The apoptosis induced by H2O2 was measured using hoechst 33,342 staining and Annexin-V FITC/PI assay. The expression of uncoupling protein 2 (UCP2), Bcl-2, Bax, and caspase-3 were observed using western blot. The effects of UCP2 knockdown on cell apoptosis and intracellular ROS production were also investigated. RESULTS: H2O2 exposure led to significant activation of oxidative stress followed by increased apoptosis and ROS production, as well as decreased UCP2 expression in H9c2 cells. YQHX treatment at the concentration of 0.75 and 1.5 mg/ml remarkably reduced the expression of Bax and caspase-3, whereas increased the protein expression of Bcl-2 and UCP2. These changes were attenuated by transgenic knockdown of UCP2 with Lenti-shUCP2 vector. CONCLUSIONS: Taken together, our study demonstrated that YQHX attenuates H2O2-induced apoptosis by upregulating UCP2 expression in H9c2 Cells, suggesting that YQHX is a promising therapeutic approach for the treatment of I/R injury-mediated apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Proteína Desacopladora 2/metabolismo , Animais , Linhagem Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Proteína Desacopladora 2/genética , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-30476595

RESUMO

Oxidative damage is a potential physiological cost of thermoregulation during seasonal adjustments to air temperature (Ta) in small mammals. Here, we hypothesized that Ta affects serum thyroid hormone levels and these hormones can mediate the changes in metabolic rate and oxidative damage. Mongolian gerbils (Meriones unguiculatus) were acclimated at different Tas (5 °C, 23 °C and 37 °C) for 3 weeks. Serum tri-iodothyronine (T3) levels increased at 5 °C but decreased at 37 °C compared to the control (23 °C). Protein carbonyls increased in liver at 37 °C compared with control, however, lipid damage (malonaldehyde, MDA) in both serum and liver was unrelated to Ta. After the effects of different Tas on thyroid hormone levels and oxidative damage markers were determined, we further investigate whether thyroid hormones mediated metabolic rate and oxidative damage. Another set of gerbils received 0.0036% L-thyroxin (hyperthyroid), 0.04% Methylimazol (hypothyroid) or water (control). Hypothyroid group showed a 34% reduction in resting metabolic rate (RMR) also 42% and 26% increases in MDA and liver protein carbonyl respectively, whereas hyperthyroid group had higher RMR, liver mass and superoxide dismutase (SOD) compared to control. Serum T3 or T3/T4 levels were correlated positively with RMR, liver mass, and SOD, but negatively with MDA and uncoupling protein 2 (UCP2). We concluded that high Ta induced hypothyroidism, decreased RMR and increased oxidative damage, whereas low Ta induced hyperthyroidism, increased RMR and unchanged oxidative damage. These data supported our hypothesis that thyroid hormones can be a cue to mediate metabolic rate and different aspects of oxidative and antioxidant activities at different Tas.


Assuntos
Metabolismo Basal/fisiologia , Gerbillinae/fisiologia , Oxirredução , Hormônios Tireóideos/fisiologia , Animais , Antioxidantes/metabolismo , Gerbillinae/metabolismo , Fígado/metabolismo , Malondialdeído/metabolismo , Carbonilação Proteica/fisiologia , Superóxido Dismutase/metabolismo , Temperatura , Proteína Desacopladora 2/metabolismo
20.
Mitochondrion ; 42: 50-53, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29154852

RESUMO

Polycystic liver diseases (PCLDs) are autosomal dominant disorders. To date, 3 genes are known to be associated with the disease, SEC63 and PRKCSH and LRP5. Here, we report that mice deficient in the mitochondrial uncoupling protein 2 gene (Ucp2-/-) spontaneously developed PCLDs when they were over 12months old. Macroscopical observation, blood chemistry as well as histopathological analysis demonstrated the PCLDs found in Ucp2-/- mice were very similar to the findings in human PCLDs. This is the first report describing the gene encoding mitochondrial protein is causative for PCLDs. UCP2 may be a biomarker of the PCLDs in humans.


Assuntos
Cistos/genética , Hepatopatias/genética , Proteína Desacopladora 2/deficiência , Animais , Análise Química do Sangue , Modelos Animais de Doenças , Feminino , Histocitoquímica , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA