Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Virol ; 98(7): e0052124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38874361

RESUMO

The reoccurrence of successive waves of SARS-CoV-2 variants suggests the exploration of more vaccine alternatives is imperative. Modified vaccinia virus Ankara (MVA) is a virus vector exhibiting excellent safety as well as efficacy for vaccine development. Here, a series of recombinant MVAs (rMVAs) expressing monomerized or trimerized S proteins from different SARS-CoV-2 variants are engineered. Trimerized S expressed from rMVAs is found predominantly as trimers on the surface of infected cells. Remarkably, immunization of mice with rMVAs demonstrates that S expressed in trimer elicits higher levels of binding IgG and IgA, as well as neutralizing antibodies for matched and mismatched S proteins than S in the monomer. In addition, trimerized S expressed by rMVA induces enhanced cytotoxic T-cell responses than S in the monomer. Importantly, the rMVA vaccines expressing trimerized S exhibit superior protection against a lethal SARS-CoV-2 challenge as the immunized animals all survive without displaying any pathological conditions. This study suggests that opting for trimerized S may represent a more effective approach and highlights that the MVA platform serves as an ideal foundation to continuously advance SARS-CoV-2 vaccine development. IMPORTANCE: MVA is a promising vaccine vector and has been approved as a vaccine for smallpox and mpox. Our analyses suggested that recombinant MVA expressing S in trimer (rMVA-ST) elicited robust cellular and humoral immunity and was more effective than MVA-S-monomer. Importantly, the rMVA-ST vaccine was able to stimulate decent cross-reactive neutralization against pseudoviruses packaged using S from different sublineages, including Wuhan, Delta, and Omicron. Remarkably, mice immunized with rMVA-ST were completely protected from a lethal challenge of SARS-CoV-2 without displaying any pathological conditions. Our results demonstrated that an MVA vectored vaccine expressing trimerized S is a promising vaccine candidate for SARS-CoV-2 and the strategy might be adapted for future vaccine development for coronaviruses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vaccinia virus , Animais , Vaccinia virus/genética , Vaccinia virus/imunologia , Camundongos , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Feminino , Humanos , Camundongos Endogâmicos BALB C , Multimerização Proteica , Imunoglobulina G/imunologia , Linfócitos T Citotóxicos/imunologia , Imunoglobulina A/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/genética , Vetores Genéticos
2.
Curr Atheroscler Rep ; 23(12): 78, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34671861

RESUMO

PURPOSE OF REVIEW: The interplay between viral respiratory infections and cardiovascular disease has been most comprehensively researched using seasonal and pandemic influenza viruses as case studies. Here, we summarize the latest international observational research and clinical trials that examined the association between influenza, influenza vaccines, and cardiovascular disease, while contextualizing their findings within those of landmark studies. RECENT FINDINGS: Most recent observational literature found that one in eight adults hospitalized with laboratory-confirmed influenza infection experienced an acute cardiovascular event. The latest meta-analysis of the cardioprotective effects of influenza vaccine found a 25% reduced risk of all-cause death. There are four large cardiovascular outcome trials assessing the cardioprotective effects of different influenza vaccine strategies. Among these, the INVESTED study showed there is no significant difference between the high-dose trivalent and standard-dose quadrivalent influenza vaccines in reducing all-cause mortality or cardiopulmonary hospitalizations in a high-risk patient group with pre-existing cardiovascular disease. Persons with cardiovascular disease represent a high priority group for viral vaccines; hence, using robust evidence to increase vaccine confidence among patients and practitioners is integral as we prepare for a possible influenza resurgence in the coming years.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Vacinas contra Influenza , Influenza Humana , Adulto , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/epidemiologia , Humanos , Influenza Humana/complicações , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vacinação
3.
Int J Mol Sci ; 18(1)2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28025504

RESUMO

Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.


Assuntos
Vacinas contra Influenza/genética , Genética Reversa/métodos , Animais , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
4.
Virology ; 595: 110097, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685171

RESUMO

Current influenza vaccine is not effective in providing cross-protection against variants. We evaluated the immunogenicity and efficacy of multi-subtype neuraminidase (NA) and M2 ectodomain virus-like particle (m-cNA-M2e VLP) and chimeric M2e-H3 stalk protein vaccines (M2e-H3 stalk) in ferrets. Our results showed that ferrets with recombinant m-cNA-M2e VLP or M2e-H3 stalk vaccination induced multi-vaccine antigen specific IgG antibodies (M2e, H3 stalk, NA), NA inhibition, antibody-secreting cells, and IFN-γ secreting cell responses. Ferrets immunized with either m-cNA-M2e VLP or M2e-H3 stalk vaccine were protected from H1N1 and H3N2 influenza viruses by lowering viral titers in nasal washes, trachea, and lungs after challenge. Vaccinated ferret antisera conferred broad humoral immunity in naïve mice. Our findings provide evidence that immunity to M2e and HA-stalk or M2e plus multi-subtype NA proteins induces cross-protection in ferrets.


Assuntos
Anticorpos Antivirais , Proteção Cruzada , Furões , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza , Neuraminidase , Infecções por Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Proteção Cruzada/imunologia , Anticorpos Antivirais/imunologia , Neuraminidase/imunologia , Neuraminidase/genética , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Camundongos , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Proteínas Viroporinas , Proteínas Virais
5.
Expert Rev Vaccines ; 23(1): 39-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38037386

RESUMO

INTRODUCTION: Influenza B viruses (IBV) cause a significant health and economic burden annually. Due to lower antigenic drift rate, less extensive antigenic diversity, and lack of animal reservoirs, the development of highly effective universal vaccines against IBV might be in reach. Current seasonal influenza vaccines are formulated to induce antibodies against the Hemagglutinin (HA) protein, but their effectiveness is reduced by mismatch between vaccine and circulating strains. AREAS COVERED: Given antibodies against the Neuraminidase (NA) have been associated with protection during influenza infection, there is considerable interest in the development of NA-based influenza vaccines. This review summarizes insights into the role of NA-based immunity against IBV and highlights knowledge gaps that should be addressed to inform the design of next-generation influenza B vaccines. We discuss how antibodies recognize broadly cross-reactive epitopes on the NA and the lack of understanding of IBV NA antigenic evolution which would benefit vaccine development in the future. EXPERT OPINION: Demonstrating NA antibodies as correlates of protection for IBV in humans would be paramount. Determining the extent of IBV NA antigenic evolution will be informative. Finally, it will be critical to determine optimal strategies for incorporating the appropriate NA antigens in existing clinically approved vaccine formulations.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Vírus da Influenza B , Neuraminidase , Antígenos Virais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Infecções por Orthomyxoviridae/prevenção & controle
6.
Virus Res ; 323: 198991, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36302472

RESUMO

Rapid antigenic evolution of the influenza A virus surface antigen hemagglutinin undermines protection conferred by seasonal vaccines. Protective correlates targeted by universal vaccines such as cytotoxic T cells or HA stem directed broadly neutralizing antibodies have been shown to select for immune escape mutants during infection. We developed an in vivo serial passage mouse model for viral adaptation and used next generation sequencing to evaluate full genome viral evolution in the context of broadly protective immunity. Heterosubtypic immune pressure increased the incidence of genome-wide single nucleotide variants, though mutations found in early adapted populations were predominantly stochastic in nature. Prolonged adaptation under heterosubtypic immune selection resulted in the manifestation of highly virulent phenotypes that ablated vaccine mediated protection from mortality. High frequency mutations unique to escape phenotypes were identified within the polymerase encoding segments. These findings suggest that a suboptimial usage of population-wide universal influenza vaccine may drive formation of escape variants attributed to polygenic changes.

7.
mBio ; 14(4): e0062223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37466314

RESUMO

Vaccination is the most effective countermeasure to reduce the severity of influenza. Current seasonal influenza vaccines mainly elicit humoral immunity targeting hemagglutinin (HA). In particular, the amino acid residues around the receptor-binding site in the HA head domain are predominantly targeted by humoral immunity as "immunodominant" epitopes. However, mutations readily accumulate in the head domain due to high plasticity, resulting in antigenic drift and vaccine mismatch, particularly with influenza A (H3N2) viruses. A vaccine strategy that targets more conserved immunosubdominant epitopes is required to attain a universal vaccine. Here, we designed an H3 HA vaccine antigen with various amino acids at immunodominant epitopes of the HA head domain, termed scrambled HA (scrHA). In ferrets, scrHA vaccination induced lower serum neutralizing antibody levels against homologous virus compared with wild-type (WT) HA vaccination; however, similar levels of moderately neutralizing titers against antigenically distinct H3N2 viruses were observed. Ferrets vaccinated with scrHA twice and then challenged with homologous or heterologous virus showed the same level of reduced virus shedding in nasal swabs as WT HA-vaccinated animals but reduced body temperature increase, whereas WT HA-vaccinated ferrets exhibited body temperature increases similar to those of mock-vaccinated animals. scrHA elicited antibodies against HA immunodominant and -subdominant epitopes at lower and higher levels, respectively, than WT HA vaccination, whereas antistalk antibodies were induced at the same level for both groups, suggesting scrHA-induced redirection from immunodominant to immunosubdominant head epitopes. scrHA vaccination thus induced broader coverage than WT HA vaccination by diluting out the immunodominancy of HA head epitopes. IMPORTANCE Current influenza vaccines mainly elicit antibodies that target the immunodominant head domain, where strain-specific mutations rapidly accumulate, resulting in frequent antigenic drift and vaccine mismatch. Targeting conserved immunosubdominant epitopes is essential to attain a universal vaccine. Our findings with the scrHA developed in this study suggest that designing vaccine antigens that "dilute out" the immunodominancy of the head epitopes may be an effective strategy to induce conserved immunosubdominant epitope-based immune responses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Hemaglutininas , Epitopos Imunodominantes , Epitopos , Vírus da Influenza A Subtipo H3N2/genética , Anticorpos Antivirais , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Animais Selvagens
8.
Vaccine ; 41(41): 6017-6024, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37633749

RESUMO

Next generation influenza vaccines are in development and have the potential for widespread health and economic benefits. Determining the potential health and economic impact for these vaccines is needed to drive investment in bringing these vaccines to the market, and to inform which groups public health policies on influenza vaccination should target. We used a mathematical modelling approach to estimate the epidemiological impact and cost-effectiveness of next generation influenza vaccines in England and Wales. We used data from an existing fitted model, and evaluated new vaccines with different characteristics ranging from improved vaccines with increased efficacy duration and breadth of protection, to universal vaccines, defined in line with the World Health Organisation (WHO) Preferred Product Characteristics (PPC). We calculated the cost effectiveness of new vaccines in comparison to the current seasonal vaccination programme. We calculated and compared the Incremental Cost-Effectiveness Ratio and Incremental Net Monetary Benefit for each new vaccine type. All analysis was conducted in R. We show that next generation influenza vaccines may result in a 21% to 77% reduction in influenza infections, dependent on vaccine characteristics. Our economic modelling shows that using any of these next generation vaccines at 2019 coverage levels would be highly cost-effective at a willingness to pay threshold of £20,000 for a range of vaccine prices. The vaccine threshold price for the best next generation vaccines in £-2019 is £230 (95%CrI £192 - £269) per dose, but even minimally-improved influenza vaccines could be priced at £18 (95%CrI £16 - £21) per dose and still remain cost-effective. This evaluation demonstrates the promise of next generation influenza vaccines for impact on influenza epidemics, and likely cost-effectiveness profiles. We have provided evidence towards a full value of vaccines assessment which bolsters the investment case for development and roll-out of next-generation influenza vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Análise Custo-Benefício , País de Gales/epidemiologia , Vacinação , Inglaterra/epidemiologia
9.
Adv Sci (Weinh) ; 10(27): e2301034, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526323

RESUMO

Because of the rapid mutation and high airborne transmission of SARS-CoV-2, a universal vaccine preventing the infection in the upper respiratory tract is particularly urgent. Here, a mosaic receptor-binding domain (RBD) nanoparticle (NP) vaccine is developed, which induces more RBD-targeted type IV neutralizing antibodies (NAbs) and exhibits broad cross-protective activity against multiple SARS-CoV-2 sublineages including the newly-emerged BF.7, BQ.1, XBB. As several T-cell-reactive epitopes, which are highly conserved in sarbecoviruses, are displayed on the NP surface, it also provokes potent and cross-reactive cellular immune responses in the respiratory tissue. Through intranasal delivery, it elicits robust mucosal immune responses and full protection without any adjuvants. Therefore, this intranasal mosaic NP vaccine can be further developed as a pan-sarbecovirus vaccine to block the viral entrance from the upper respiratory tract.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Imunidade nas Mucosas
10.
Annu Rev Biomed Data Sci ; 6: 419-441, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37196356

RESUMO

Viruses evolve to evade prior immunity, causing significant disease burden. Vaccine effectiveness deteriorates as pathogens mutate, requiring redesign. This is a problem that has grown worse due to population increase, global travel, and farming practices. Thus, there is significant interest in developing broad-spectrum vaccines that mitigate disease severity and ideally inhibit disease transmission without requiring frequent updates. Even in cases where vaccines against rapidly mutating pathogens have been somewhat effective, such as seasonal influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), designing vaccines that provide broad-spectrum immunity against routinely observed viral variation remains a desirable but not yet achieved goal. This review highlights the key theoretical advances in understanding the interplay between polymorphism and vaccine efficacy, challenges in designing broad-spectrum vaccines, and technology advances and possible avenues forward. We also discuss data-driven approaches for monitoring vaccine efficacy and predicting viral escape from vaccine-induced protection. In each case, we consider illustrative examples in vaccine development from influenza, SARS-CoV-2, and HIV (human immunodeficiency virus)-three examples of highly prevalent rapidly mutating viruses with distinct phylogenetics and unique histories of vaccine technology development.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinas contra Influenza/uso terapêutico
11.
Front Immunol ; 14: 1294288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090587

RESUMO

By the end of 2022, different variants of Omicron had rapidly spread worldwide, causing a significant impact on the Coronavirus disease 2019 (COVID-19) pandemic situation. Compared with previous variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these new variants of Omicron exhibited a noticeable degree of mutation. The currently developed platforms to design COVID-19 vaccines include inactivated vaccines, mRNA vaccines, DNA vaccines, recombinant protein vaccines, virus-like particle vaccines, and viral vector vaccines. Many of these platforms have obtained approval from the US Food and Drug Administration (FDA) or the WHO. However, the Omicron variants have spread in countries where vaccination has taken place; therefore, the number of cases has rapidly increased, causing concerns about the effectiveness of these vaccines. This article first discusses the epidemiological trends of the Omicron variant and reviews the latest research progress on available vaccines. Additionally, we discuss progress in the development progress and practical significance of universal vaccines. Next, we analyze the neutralizing antibody effectiveness of approved vaccines against different variants of Omicron, heterologous vaccination, and the effectiveness of multivalent vaccines in preclinical trials. We hope that this review will provide a theoretical basis for the design, development, production, and vaccination strategies of novel coronavirus vaccines, thus helping to end the SARS-CoV-2 pandemic.


Assuntos
COVID-19 , Vacinas Virais , Estados Unidos/epidemiologia , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2/genética
12.
Front Cell Infect Microbiol ; 12: 949469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225231

RESUMO

Streptococcus pneumoniae is a Gram-positive bacterium and the leading cause of bacterial pneumonia in children and the elderly worldwide. Currently, two types of licensed vaccines are available to prevent the disease caused by this pathogen: the 23-valent pneumococcal polysaccharide-based vaccine and the 7-, 10, 13, 15 and 20-valent pneumococcal conjugate vaccine. However, these vaccines, composed of the principal capsular polysaccharide of leading serotypes of this bacterium, have some problems, such as high production costs and serotype-dependent effectiveness. These drawbacks have stimulated research initiatives into non-capsular-based vaccines in search of a universal vaccine against S. pneumoniae. In the last decades, several research groups have been developing various new vaccines against this bacterium based on recombinant proteins, live attenuated bacterium, inactivated whole-cell vaccines, and other newer platforms. Here, we review and discuss the status of non-capsular vaccines against S. pneumoniae and the future of these alternatives in a post-pandemic scenario.


Assuntos
Infecções Pneumocócicas , Idoso , Criança , Humanos , Imunização , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas , Proteínas Recombinantes , Sorogrupo , Streptococcus pneumoniae , Vacinas Conjugadas
13.
Expert Rev Anti Infect Ther ; 20(4): 507-511, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34719314

RESUMO

INTRODUCTION: Mitigation of future viral pandemics is an enormous technical problem, but its solution is essential for preservation of life, economic well-being, and social stability. The author examined host-level, direct action antiviral, and universal vaccine approaches while presenting a specific screening proposal. AREAS COVERED: The author examined the most recent biomedical literature publicly available in the databases and identified the publications supporting the principle of cross-applicability of direct-action antivirals (DAA) within similar viral families and at greater phylogenetic distances. EXPERT OPINION: Comparing different approaches, the author showed that the cocktails of DAAs, including parent compounds that passed Phase I trials need to be preemptively tested for all major viral families, approved, and stockpiled (or dual-use production facilities designated). The quick distribution of the pre-approved and pre-positioned antiviral cocktails (even of moderate efficiency) reduces mortality and economic damage many-fold, resulting in the trillion-scale savings in a pandemic context. This pre-positioning approach is only one in the combinatorial toolkit that needs to be included in the plan for all viral families of importance. A dedicated international public-private initiative can achieve savings in these proactive preparedness efforts, as well as to keep the focus of politicians and public on the problem.


Assuntos
Pandemias , Vacinas , Antivirais/farmacologia , Humanos , Pandemias/prevenção & controle , Filogenia
14.
Viruses ; 13(4)2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916702

RESUMO

Replication of RNA viruses is characterized by exploration of sequence space which facilitates their adaptation to changing environments. It is generally accepted that such exploration takes place mainly in response to positive selection, and that further diversification is boosted by modifications of virus population size, particularly bottleneck events. Our recent results with hepatitis C virus (HCV) have shown that the expansion in sequence space of a viral clone continues despite prolonged replication in a stable cell culture environment. Diagnosis of the expansion was based on the quantification of diversity indices, the occurrence of intra-population mutational waves (variations in mutant frequencies), and greater individual residue variations in mutant spectra than those anticipated from sequence alignments in data banks. In the present report, we review our previous results, and show additionally that mutational waves in amplicons from the NS5A-NS5B-coding region are equally prominent during HCV passage in the absence or presence of the mutagenic nucleotide analogues favipiravir or ribavirin. In addition, by extending our previous analysis to amplicons of the NS3- and NS5A-coding region, we provide further evidence of the incongruence between amino acid conservation scores in mutant spectra from infected patients and in the Los Alamos National Laboratory HCV data banks. We hypothesize that these observations have as a common origin a permanent state of HCV population disequilibrium even upon extensive viral replication in the absence of external selective constraints or changes in population size. Such a persistent disequilibrium-revealed by the changing composition of the mutant spectrum-may facilitate finding alternative mutational pathways for HCV antiviral resistance. The possible significance of our model for other genetically variable viruses is discussed.


Assuntos
Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/virologia , Antivirais/farmacologia , COVID-19 , Linhagem Celular , Farmacorresistência Viral/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Humanos , Mutação , RNA Viral , Ribavirina/farmacologia , Análise de Sequência , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos
15.
Pathogens ; 9(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192196

RESUMO

Influenza virus infections represent a serious public health problem causing contagious respiratory disease and substantial morbidity and mortality in humans, resulting in a considerable economic burden worldwide. Notably, the number of deaths due to influenza exceeds that of any other known pathogen. Moreover, influenza infections can differ in their intensity, from mild respiratory disease to pneumonia, which can lead to death. Articles in this Special Issue have addressed different aspects of influenza in human health, and the advances in influenza research leading to the development of better therapeutics and vaccination strategies, with a special focus on the study of factors associated with innate or adaptive immune responses to influenza vaccination and/or infection.

16.
Expert Opin Biol Ther ; 19(7): 671-683, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30957589

RESUMO

INTRODUCTION: Influenza occurs worldwide and causes significant disease burden in terms of morbidity, associated complications, hospitalizations, and deaths. Vaccination constitutes the primary approach for controlling influenza. Current influenza vaccines elicit a strain-specific response yet occasionally exhibit suboptimal effectiveness. This review describes the limits of available immunization tools and the future prospects and potentiality of universal influenza vaccines. AREAS COVERED: New 'universal' vaccines, which are presently under development, are expected to overcome the problems related to the high variability of influenza viruses, such as the need for seasonal vaccine updates and re-vaccination. Here, we explore vaccines based on the highly conserved epitopes of the HA, NA, or extracellular domain of the influenza M2 protein, along with those based on the internal proteins such as NP and M1. EXPERT OPINION: The development of a universal influenza vaccine that confers protection against homologous, drifted, and shifted influenza virus strains could obviate the need for annual reformulation and mitigate disease burden. The scientific community has long been awaiting the advent of universal influenza vaccines; these are currently under development in laboratories worldwide. If such vaccines are immunogenic, efficacious, and able to confer long-lasting immunity, they might be integrated with or supplant traditional influenza vaccines.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Animais , Hemaglutininas/imunologia , Humanos , Influenza Humana/imunologia , Neuraminidase/imunologia , Peptídeos/imunologia , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Linfócitos T/imunologia , Proteínas da Matriz Viral/imunologia
17.
Viruses ; 11(5)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083353

RESUMO

Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.


Assuntos
Epitopos de Linfócito T/imunologia , Gastroenterite/prevenção & controle , Norovirus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Gastroenterite/imunologia , Gastroenterite/virologia , Humanos , Norovirus/química , Norovirus/genética , Vacinas Virais/química , Vacinas Virais/genética
18.
Viruses ; 10(9)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231576

RESUMO

Vaccination could be an evolutionary pressure on seasonal influenza if vaccines reduce the transmission rates of some ("targeted") strains more than others. In theory, more vaccinated populations should have a lower prevalence of targeted strains compared to less vaccinated populations. We tested for vaccine-induced selection in influenza by comparing strain frequencies between more and less vaccinated human populations. We defined strains in three ways: first as influenza types and subtypes, next as lineages of type B, and finally as clades of influenza A/H3N2. We detected spatial differences partially consistent with vaccine use in the frequencies of subtypes and types and between the lineages of influenza B, suggesting that vaccines do not select strongly among all these phylogenetic groups at regional scales. We did detect a significantly greater frequency of an H3N2 clade with known vaccine escape mutations in more vaccinated countries during the 2014⁻2015 season, which is consistent with vaccine-driven selection within the H3N2 subtype. Overall, we find more support for vaccine-driven selection when large differences in vaccine effectiveness suggest a strong effect size. Variation in surveillance practices across countries could obscure signals of selection, especially when strain-specific differences in vaccine effectiveness are small. Further examination of the influenza vaccine's evolutionary effects would benefit from improvements in epidemiological surveillance and reporting.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Estações do Ano , Seleção Genética/imunologia , Algoritmos , Variação Antigênica , Humanos , Imunogenicidade da Vacina , Incidência , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A/classificação , Influenza Humana/prevenção & controle , Modelos Estatísticos , Vacinação , Cobertura Vacinal
19.
Vaccines (Basel) ; 6(2)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772781

RESUMO

Despite global vaccination efforts, influenza virus continues to cause yearly epidemics and periodic pandemics throughout most of the world. Many of us consider the generation of broader, potent and long-lasting immunity against influenza viruses as critical in curtailing the global health and economic impact that influenza currently plays. To date, classical vaccinology has relied on the generation of neutralizing antibodies as the benchmark to measure vaccine effectiveness. However, recent developments in numerous related fields of biomedical research including, HIV, HSV and DENV have emphasized the importance of Fc-mediate effector functions in pathogenesis and immunity. The concept of Fc effector functions in contributing to protection from illness is not a new concept and has been investigated in the field for over four decades. However, in recent years the application and study of Fc effector functions has become revitalized with new knowledge and technologies to characterize their potential importance in immunity. In this perspective, we describe the current state of the field of Influenza Fc effector functions and discuss its potential utility in universal vaccine design in the future.

20.
EMBO Mol Med ; 10(2): 175-187, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217660

RESUMO

Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV), two members of the Pneumoviridae family, account for the majority of severe lower respiratory tract infections worldwide in very young children. They are also a frequent cause of morbidity and mortality in the elderly and immunocompromised adults. High levels of neutralizing antibodies, mostly directed against the viral fusion (F) glycoprotein, correlate with protection against either hRSV or hMPV However, no cross-neutralization is observed in polyclonal antibody responses raised after virus infection or immunization with purified F proteins. Based on crystal structures of hRSV F and hMPV F, we designed chimeric F proteins in which certain residues of well-characterized antigenic sites were swapped between the two antigens. The antigenic changes were monitored by ELISA with virus-specific monoclonal antibodies. Inoculation of mice with these chimeras induced polyclonal cross-neutralizing antibody responses, and mice were protected against challenge with the virus used for grafting of the heterologous antigenic site. These results provide a proof of principle for chimeric fusion proteins as single immunogens that can induce cross-neutralizing antibody and protective responses against more than one human pneumovirus.


Assuntos
Anticorpos Neutralizantes/imunologia , Metapneumovirus , Infecções por Paramyxoviridae , Proteínas Recombinantes de Fusão/imunologia , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Proteínas Virais de Fusão/imunologia , Animais , Humanos , Imunização , Metapneumovirus/efeitos dos fármacos , Metapneumovirus/imunologia , Camundongos , Modelos Animais , Infecções por Paramyxoviridae/tratamento farmacológico , Infecções por Paramyxoviridae/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/imunologia , Vacinas Sintéticas , Proteínas Virais de Fusão/farmacologia , Vacinas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA