Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(28): 12430-12440, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968084

RESUMO

Soil organic carbon (SOC) is pivotal for both agricultural activities and climate change mitigation, and biochar stands as a promising tool for bolstering SOC and curtailing soil carbon dioxide (CO2) emissions. However, the involvement of biochar in SOC dynamics and the underlying interactions among biochar, soil microbes, iron minerals, and fresh organic matter (FOM, such as plant debris) remain largely unknown, especially in agricultural soils after long-term biochar amendment. We therefore introduced FOM to soils with and without a decade-long history of biochar amendment, performed soil microcosm incubations, and evaluated carbon and iron dynamics as well as microbial properties. Biochar amendment resulted in 2-fold SOC accrual over a decade and attenuated FOM-induced CO2 emissions by approximately 11% during a 56-day incubation through diverse pathways. Notably, biochar facilitated microbially driven iron reduction and subsequent Fenton-like reactions, potentially having enhanced microbial extracellular electron transfer and the carbon use efficiency in the long run. Throughout iron cycling processes, physical protection by minerals could contribute to both microbial carbon accumulation and plant debris preservation, alongside direct adsorption and occlusion of SOC by biochar particles. Furthermore, soil slurry experiments, with sterilization and ferrous iron stimulation controls, confirmed the role of microbes in hydroxyl radical generation and biotic carbon sequestration in biochar-amended soils. Overall, our study sheds light on the intricate biotic and abiotic mechanisms governing carbon dynamics in long-term biochar-amended upland soils.


Assuntos
Carbono , Ferro , Microbiologia do Solo , Solo , Solo/química , Ferro/química , Ferro/metabolismo , Carvão Vegetal/química , Dióxido de Carbono/metabolismo
2.
Ecotoxicol Environ Saf ; 230: 113154, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34974358

RESUMO

The spatial dynamics of heavy metal contamination in the upland soils of northern China are relatively unknown, despite the region's high contribution to the national grain output. In this study, the concentrations of As, Cd, Co, Cr, Cu, Mn, Pb, Sb, Sc, Ti, and Zn and subsequent ecological and human health risks were investigated in three major grain producing areas (Hexi Corridor, L1; Hetao irrigation area, L2; and eastern Inner Mongolia, L3) of northern China. Among the heavy metals, Ti had the highest average concentration of 3.02 g/kg, followed by Mn (470 mg/kg), Cr (56.6 mg/kg), Zn (34.3 mg/kg), Pb (19.4 mg/kg), Cu (17.8 mg/kg), Co (9.66 mg/kg), Sc (7.26 mg/kg), As (5.35 mg/kg), Sb (0.73 mg/kg), and Cd (0.17 mg/kg). Generally, the heavy metal concentrations decreased from west to east (L1 > L2 > L3) across northern China. Moreover, three potential sources of the heavy metal were distinguished, including natural process, anthropogenic activities (industrial development and agricultural cultivation), and atmospheric deposition. Although the contamination of the single metal (including Cd, Cr, Cu, and Pb) was moderate in L1 and L2, the combined contamination was low in the upland soils. It was noted that Cd posed a moderate to considerable ecological risk on the upland soils in northern China. This metal was the most sensitive factor in assessing the combined ecological risk, with a contribution rate of 91.56-94.84%. Considering the ingestion exposure, the current concentrations of the metals posed minimal risks to human health. Furthermore, children experienced higher health risks than adults. Present study analyzed the probabilistic distribution of contamination, ecological, and health risk of heavy metals in upland soils of northern China, providing fundamental information for better agricultural heavy metal pollution assessment in China.

3.
Glob Chang Biol ; 27(4): 929-940, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33135275

RESUMO

Aerated topsoils are important sinks for atmospheric methane (CH4 ) via oxidation by CH4 -oxidizing bacteria (MOB). However, intensified management of grasslands and forests may reduce the CH4 sink capacity of soils. We investigated the influence of grassland land-use intensity (150 sites) and forest management type (149 sites) on potential atmospheric CH4 oxidation rates (PMORs) and the abundance and diversity of MOB (with qPCR) in topsoils of three temperate regions in Germany. PMORs measurements in microcosms under defined conditions yielded approximately twice as much CH4 oxidation in forest than in grassland soils. High land-use intensity of grasslands had a negative effect on PMORs (-40%) in almost all regions and fertilization was the predominant factor of grassland land-use intensity leading to PMOR reduction by 20%. In contrast, forest management did not affect PMORs in forest soils. Upland soil cluster (USC)-α was the dominant group of MOBs in the forests. In contrast, USC-γ was absent in more than half of the forest soils but present in almost all grassland soils. USC-α abundance had a direct positive effect on PMOR in forest, while in grasslands USC-α and USC-γ abundance affected PMOR positively with a more pronounced contribution of USC-γ than USC-α. Soil bulk density negatively influenced PMOR in both forests and grasslands. We further found that the response of the PMORs to pH, soil texture, soil water holding capacity and organic carbon and nitrogen content differ between temperate forest and grassland soils. pH had no direct effects on PMOR, but indirect ones via the MOB abundances, showing a negative effect on USC-α, and a positive on USC-γ abundance. We conclude that reduction in grassland land-use intensity and afforestation has the potential to increase the CH4 sink function of soils and that different parameters determine the microbial methane sink in forest and grassland soils.


Assuntos
Metano , Solo , Florestas , Alemanha , Pradaria , Metano/análise , Microbiologia do Solo
4.
Sci Total Environ ; 929: 172439, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621540

RESUMO

Biochar and soil carbon sequestration hold promise in mitigating global warming by storing carbon in the soil. However, the interaction between biochar properties, soil carbon-nitrogen cycling, and nitrogen fertilizer application's impact on soil carbon-nitrogen balance remained unclear. Herein, we conducted batch experiments to study the effects and mechanisms of rice straw biochar application (produced at 300, 500, and 700 °C) on net greenhouse gas emissions (CO2, N2O, CH4) in upland soils under different forms of nitrogen fertilizers. The findings revealed that (NH4)2SO4 and urea significantly elevated soil carbon dioxide equivalent emissions, ranging from 28 to 61.7 kg CO2e/ha and 8.2 to 37.7 kg CO2e/ha, respectively. Conversely, KNO3 reduced soil CO2e emissions, ranging from 2.2 to 13.6 kg CO2e/ha. However, none of these three nitrogen forms exhibited a significant effect on CH4 emissions. The pyrolysis temperature of biochar was found negatively correlated with soil CO2 and N2O emissions. The alkaline substances presented in biochar pyrolyzed at 500-700 °C raised soil pH, increased the ratio of Gram-negative to Gram-positive bacteria, and enhanced the relative abundance of Sphingomonadaceae. Moreover, the co-application of KNO3 based nitrogen fertilizer and biochar increased the total carbon/inorganic nitrogen ratio and reduces the relative abundance of Nitrospirae. This series of reactions led to a significant increase in soil DOC content, meanwhile reduced soil CO2 emissions, and inhibited the nitrification process and decreased the emission of soil N2O. This study provided a scientific basis for the rational application of biochar in soil.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Fertilizantes , Nitrogênio , Óxido Nitroso , Solo , Carvão Vegetal/química , Fertilizantes/análise , Solo/química , Óxido Nitroso/análise , Nitrogênio/análise , Dióxido de Carbono/análise , Poluentes Atmosféricos/análise , Gases de Efeito Estufa/análise , Agricultura/métodos
5.
J Environ Radioact ; 266-267: 107241, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454645

RESUMO

Neptunium-237 and 239Pu are important radionuclides in the safety assessment related to geological disposal of radioactive waste because of the possibility of long-term exposure to humans. Mobilities of these radionuclides in the environment are of particular importance for their radiation dose evaluation; therefore, in this study, we have made the assessment of the soil-soil solution distribution coefficient (Kd, L/kg) using global fallout 237Np and 239Pu in Japanese upland soils. The Kd values were determined by extracting these radionuclides from 24 soil samples using a laboratory batch method. The desorption Kd values of 237Np ranged from 3.3 × 102 to 1.0 × 104 L/kg, and their geometric mean (GM) and arithmetic mean (AM) were 1.7 × 103 L/kg and 2.6 × 103 L/kg, respectively. The desorption Kd values of 239Pu were found to vary from 9.4 × 103 to 7.1 × 104 L/kg, and their GM and AM were 3.3 × 104 L/kg and 4.0 × 104 L/kg, respectively. In Japanese upland soils, the Kd value of 239Pu was one order of magnitude higher than that of 237Np.


Assuntos
Netúnio , Plutônio , Monitoramento de Radiação , Poluentes Radioativos do Solo , Solo , Plutônio/análise , Solo/química , Poluentes Radioativos do Solo/análise , Japão , Netúnio/análise
6.
Microorganisms ; 11(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36985167

RESUMO

Nitrous oxide (N2O) pulse emissions are detected in soils subjected to freeze-thaw cycles in both laboratory and field experiments. However, the mechanisms underlying this phenomenon are poorly understood. In this study, a laboratory incubation experiment that included freeze-thaw cycles (FTC), freezing (F) and control (CK) treatments was performed on three typical Chinese upland soils, namely, fluvo-aquic soil (FS), black soil (BS) and loess soil (LS). A higher similarity in soil properties and bacterial community structure was discovered between FS and LS than between FS and BS or LS and BS, and the bacterial diversity of FS and LS was higher than that of BS. FTC significantly increased the denitrification potential and the proportion of N2O in the denitrification gas products in FS and LS but decreased the denitrification potential in BS. Accordingly, with the increasing number of freeze-thaw cycles, the bacterial community composition in the FTC treatments in FS and LS diverged from that in CK but changed little in BS. Taxa that responded to FTC or correlated with denitrification potential were identified. Taken together, our results demonstrated that the effects of FTC on N2O emissions are soil-type-dependent and that the shift in the microbial community structure may contribute to the elevated N2O emissions.

7.
Microbes Environ ; 37(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965098

RESUMO

Ammonia-oxidizing archaea (AOA), key players in agricultural upland soil nitrification, convert soil ammonium to nitrite. The microbial oxidation of ammonia to nitrite is an important part of the global biogeochemical nitrogen cycle. In the present study, we recovered six novel AOA metagenome-assembled genomes (MAGs) containing genes for carbon (C) fixation and nitrogen (N) metabolism by using a deep shotgun metagenomic sequencing strategy. We also found that these AOA MAGs possessed cobalamin synthesis genes, suggesting that AOA are vitamin suppliers in agricultural upland soil. Collectively, the present results deepen our understanding of the metabolic potential and phylogeny of AOA in agroecosystems.


Assuntos
Amônia , Archaea , Amônia/metabolismo , Bactérias , Metagenoma , Nitritos/metabolismo , Oxirredução , Solo , Microbiologia do Solo
8.
Sci Total Environ ; 795: 148863, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34247074

RESUMO

Elevated nitrogen (N) addition from anthropogenic activities has great impacts on soil methane (CH4) uptake, which could interrupt the existing global CH4 balance and cause feedbacks to climate and biogeochemical processes. Previous studies have come to inconsistent conclusions on both the quantification of the response of CH4 uptake to N addition and understanding of its underlying mechanisms, probably due to the lack of experimental data. Here, we conduct a broad meta-analysis of 90 papers to quantify the responses of CH4 uptake to N addition in upland soil. The results show that N addition has a significant negative impact on soil CH4 uptake (-19.25%), which is termed the N inhibition effect. Soil pH is identified as the dominant factor, with the other factors affecting the CH4 uptake through the alteration of soil pH. The N inhibition effect is observed to be large and significant in forest and grassland, but small and insignificant in farmland, because of the distinct composition of their methanotrophic communities. A threshold of the N addition level is identified at about 68 kg N ha-1 year-1, which indicates the lowest N inhibition effect. Furthermore, the convex relationship between response ratio of CH4 uptake (negative) and N addition duration indicates that a medium level of N addition duration has the largest N inhibition effect, and longer or shorter durations will both reduce the effect. Our analysis of the N inhibition effect implies that controlling the N addition level could effectively reduce the CH4 concentration in the atmosphere and thus relieve global warming.


Assuntos
Nitrogênio , Solo , Clima , Florestas , Metano
9.
Environ Pollut ; 279: 116892, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33751943

RESUMO

The aims of this study were to determine type and application rate of composted animal manure to optimize sweet potato yield relative to N2O emissions from upland soils. To this end, the study was conducted on upland soils amended with different types and rates of composted animal manure and located at two geographically different regions of South Korea. Field trials were established at Miryang and Yesan in South Korea during the sweet potato (Ipomoea batatas) growing season over 2 years: 2017 (Year 1) and 2018 (Year 2). Three composted animal manures (chicken, cow, and pig) were applied at the rates of 0, 10, and 20 Mg ha-1 to upland soils in both locations. In both Years and locations, manure type did not affected significantly cumulative N2O emissions from soil during the sweet potato growing season or the belowground biomass of sweet potato. However, application rate of animal manures affected significantly the cumulative N2O emission, nitrogen (N) in soil, and belowground biomass of sweet potato. An increase in cumulative N2O emission with application rates of animal manures was related to total N and inorganic N concentration in soil. The belowground biomass yield of sweet potato but also the cumulative N2O emission increased with increasing application rate of composted animal manures up to 7.6 and 16.0 Mg ha-1 in Miryang and Yesan, respectively. To reduce N2O emission from arable soil while increasing crop yield, composted animal manures should be applied at less than application rate that produce the maximum belowground biomass of sweet potato.


Assuntos
Ipomoea batatas , Óxido Nitroso , Agricultura , Animais , Fertilizantes , Esterco/análise , Nitrogênio , Óxido Nitroso/análise , República da Coreia , Solo , Suínos
10.
Sci Total Environ ; 780: 146677, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030304

RESUMO

The environmental threshold for upland soil phosphorus (P) content (ETSP, i.e., inflection point of soil P content leading to enhanced P loss) provides an important metric for guiding agricultural nonpoint source P pollution control. This study achieved the first meta-analysis to determine ETSP values for upland soils in China. The estimated national-level ETSP based on 472 field experimental observations of Olsen-P content and P loss rate was 30.1 ± 4.0 mg P kg-1, which was lower than the average ETSP value (52.1 ± 5.0 mg P kg-1) but higher than the average agronomic threshold values (16.0 ± 6.4 mg P kg-1) previously reported. Lower upland ETSP values occurred in acidic soils and soils having higher organic matter content (SOM), precipitation and slope (ETSP: 30.5 for pH < 7.0 versus 46.1 for pH ≥ 7.0; >56.4 for SOM < 2%, 49.9 for SOM = 2%-3%, and <3 for SOM > 3%; 33 for precipitation < 1000 mm yr-1, 27.5 for precipitation = 1000-1200 mm yr-1 and <5 for precipitation > 1200 mm yr-1; and 39.8 for slopes < 5° versus <9 for slopes ≥ 5°). A multiple regression model that incorporates SOM, pH, precipitation and slope was developed to predict upland ETSP values (R2 = 0.73, p < 0.01). The model estimated national upland ETSP values ranging from ~0 to 100 mg P kg-1 with an areal-weighted average of 60.6 mg P kg-1 and 15% of national upland soils having ETSP values <30 mg P kg-1. Upland soil P contents in Guangdong, Fujian and Zhejiang provinces largely exceeded their corresponding ETSP values by 1-22 mg P kg-1, indicating high P loss risks. Controlling upland P loss requires integrated management of soil P content, SOM, pH and erosion control. This study provides the first national estimate of upland soil ETSP, providing critical quantitative information for designing management practices to attenuate agricultural nonpoint source P pollution.

11.
Front Microbiol ; 11: 588198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240244

RESUMO

The introduction of crop rotation regimes in paddy soils, for example, rice in combination with maize, implements the establishment of new paddy fields to compensate for reduced rice production on existing fields. To study responses of the soil and rhizosphere microbiota upon introduction of a new crop species into continuous cropping agroecosystems, we conducted experiments with soils from adjacent fields where rice and maize were grown successively for more than 30 years. In microcosm experiments, rice and maize plants were cultivated in both soils under the respective plant-required management regime, i.e., rice cultivation under flooded conditions and maize under non-flooded conditions. 16S rRNA gene and fungal ITS region amplicon analysis showed that the soil and rhizosphere microbiota was clearly distinct between soils after long-term rice/maize management. Upon change of the management regime, the bulk soil microbiota became different to both, the former microbial community in the soil and the community being characteristic for the respective type of long-term cropping. Nevertheless, the influence of the soil management history remained clearly visible besides the impact of the new management regime. Similar results were observed for the rhizosphere, though the combined effect of plant species and altered management was even more effective in this compartment compared to the bulk soil. The newly introduced crop plant did not take over characteristic members of the rhizosphere microbiota of the previously cultivated crop; instead, some previously rare taxa became enriched. Thus, the formerly grown crop species did not directly affect the recruitment of microorganisms in the rhizosphere of the following crop species. Further, the results show that the rhizosphere and bulk soil microbiota do not develop straight toward the specific microbiota that is characteristic for a continuous cropping system, but reach a distinct stage upon introduction of a new crop species and new management practices.

12.
Huan Jing Ke Xue ; 38(4): 1606-1612, 2017 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965165

RESUMO

A suitable fractionation method of phosphorus (P) is a key to effective assessment of soil P componential features. Here a new biologically-based P (BBP) method was used to evaluate the P fractions in the upland and paddy soils across large-scale area in China. The soil P was divided into four components:① soluble or rhizosphere-intercepted (CaCl2-P), ② organic acid activated and inorganic weakly bound (Citrate-P), ③ enzyme mineralization of organic P (Enzyme-P), ④ potential activation of inorganic P (HCl-P). Then, the relationships between biologically-based P fractions and standard Olsen-P were investigated, and driving factors of P fractions were identified. The results showed that P content was in order of HCl-P>Citrate-P>Enzyme-P>CaCl2-P. All P components of upland soil displayed higher levels than those of paddy soil. Moreover, the P components were highly positively correlated with the Olsen-P, suggesting that each P component contributed to soil P availability. However, it was found that Olsen-P was most highly correlated with CaCl2-P and Enzyme-P (R2=0.359; R2=0.386) in upland soil, while Olsen-P was most highly with Citrate-P (R2=0.788) in paddy soil. This result indicated that available P of upland soil was mainly from organic P mineralization and soluble P, and available P in paddy soil was mainly from inorganic P activation. Redundancy analysis (RDA) showed that the P components were mainly affected by soil pH and silt content, which suggested that it could enhance the P availability via regulating soil pH in the agricultural activities.


Assuntos
Fósforo/química , Solo/química , Agricultura , China , Fazendas , Fertilizantes , Oryza
13.
J Pestic Sci ; 41(4): 152-162, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30363112

RESUMO

A pesticide fate and transport model, SPEC, was developed for assessing Soil-PEC (Predicted Environmental Concentrations in agricultural soils) for pesticide residues in upland field environments. The SPEC model was validated for predicting the water content and concentrations of atrazine and metolachlor in 5-cm deep soil. Uncertainty and sensitivity analyses were used to evaluate the robustness of the model's predictions. The predicted daily soil water contents were accurate regarding the number of observation points (n=269). The coefficient of determination (R 2) and Nash-Sutcliffe efficiency (NSE ) were equal to 0.38 and 0.22, respectively. The predicted daily concentrations of atrazine and metolachlor were also satisfactory since the R 2 and NSE statistics were greater than 0.91 and 0.76, respectively. The field capacity, the saturated water content of the soil and the Q 10 parameter were identified as major contributors to variation in predicted soil water content or/and herbicide concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA