Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Res ; 263(Pt 3): 120182, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39426453

RESUMO

Unsustainable agricultural intensification and climate change effects have caused chronic soil depletion in most arid and semi-arid croplands. As such, the land application of urban sewage sludge (USS) has been regulated in several countries as an alternative soil conditioner with recycling benefits. However, the risks of multi-contamination have made its agricultural reuse debatable. Accordingly, this study explored the long-term the impact of repetitive USS applications with increasing rates (0, 40, 80, and 120 t ha-1 year-1) on a sandy soil properties. A special focus was on the spread of antibiotic-resistant bacteria, metal-resistant bacteria and corresponding resistance genes in soil (ARB, MRB, ARGs and MRGs, respectively). The outcomes showed a dose-dependent variation of different soil parameters including the increase of heavy metal content and total heterotrophic bacteria (THB) up to the highest sludge application rate. Besides, the two last sludge lots applied in fall 2019 and 2020 contained cultivable ARB for all addressed antibiotics at much higher counts than in corresponding treated soils. Interestingly, the average index of antibiotic resistance (ARB/THB) increased in the USS used in fall 2020 compared to 2019 (from 6.2% to 9.4%). This indicates that factors such as fluctuations in wastewater quality, treatments operations, and extensive antibiotic use following the outbreak of the COVID-19 pandemic in early 2020 could have caused this variation. The molecular assessment of bacterial resistance resulted in the identification of three ARGs (mefA, sul1 and sul2), one MRG (czcA) and one integron (intI1). This might have implications on resistance co-selection, which can pose a threat to human health via contaminated crops.

2.
Environ Res ; 252(Pt 3): 118985, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663668

RESUMO

The biofilm sequencing batch reactor (BSBR) technique has been deployed in the laboratory to enrich phosphorus from simulated wastewater, but it is still not clear what its performance will be when real world sewage is used. In this work, the effluent from the multi-stage anoxic-oxic (AO) activated sludge process at a sewage plant was used as the feed water for a BSBR pilot system, which had three reactors operating at different levels of dissolved oxygen (DO). The phosphorus adsorption and release, the biofilm growth, and the extracellular polymeric substances (EPS) components and contents were examined. The microbial communities and the signaling molecules N-acyl-l-homoserine lactones (AHLs) were also analyzed. Gratifyingly, the BSBR process successfully processed the treated sewage, and the biofilm developed phosphorus accumulation capability within 40 days. After entering stable operation, the system concentrated phosphate from 2.59 ± 0.77 mg/L in the influent to as much as 81.64 mg/L in the recovery liquid. Sludge discharge had profound impacts on all aspects of BSBR, and it was carried out successfully when the phosphorus absorption capacity of the biofilm alone was comparable to that of the reactor containing the activated sludge. Shortly after the sludge discharge, the phosphate concentration of the recovery liquid surged from 50 to 140 mg/L, the biofilm thickness grew from 20.56 to 67.32 µm, and the diversity of the microbial population plunged. Sludge discharge stimulated Candidatus competibacter to produce a large amount of AHLs, which was key in culturing the biofilm. Among the AHLs, both C10-HSL and 3OC12-HSL were significantly positively correlated with EPS and the abundance of Candidatus competibacter. The current results demonstrated BSBR as a viable option to enrich phosphorus from real world sewage with low phosphorus content and fluctuating chemistry. The mechanistic explorations also provided theoretical guidance for cultivating phosphorus-accumulating biofilms.


Assuntos
Biofilmes , Reatores Biológicos , Fosfatos , Esgotos , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Esgotos/química , Fosfatos/metabolismo , Fosfatos/análise , Eliminação de Resíduos Líquidos/métodos , Fósforo/análise , Fósforo/metabolismo
3.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731551

RESUMO

The aim of this study is to solve the problems of the complicated pretreatment and high analytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater. A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs and their metabolites in wastewater to develop a magnetic solid-phase extraction pretreatment combined with the acoustic ejection mass spectrometry (AEMS) analytical method. The magnetic nanospheres were successfully prepared by magnetic nanoparticles modified with divinylbenzene and vinylpyrrolidone. The results showed that the linear dynamic range of 17 drugs was 1-500 ng/mL, the recovery was 44-100%, the matrix effect was more than 51%, the quantification limit was 1-2 ng/mL, and the MS measurement was fast. It can be seen that the developed magnetic solid-phase extraction (MSPE) method is a good solution to the problems of the complicated pretreatment and analytical cost in the analysis of drugs in wastewater. The developed magnetic material and acoustic excitation pretreatment coupled with mass spectrometry analysis method can realize the low-cost, efficient enrichment, and fast analysis of different kinds of drug molecules in urban sewage.


Assuntos
Drogas Ilícitas , Espectrometria de Massas , Esgotos , Extração em Fase Sólida , Esgotos/análise , Esgotos/química , Extração em Fase Sólida/métodos , Espectrometria de Massas/métodos , Drogas Ilícitas/análise , Poluentes Químicos da Água/análise , Águas Residuárias/análise , Águas Residuárias/química , Nanopartículas de Magnetita/química
4.
Water Sci Technol ; 90(1): 190-212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007314

RESUMO

Numerous countries and regions have embraced implementing a separate sewer system, segregating sanitary and storm sewers into distinct systems. However, the functionality of these systems often needs to improve due to irregular interconnections, resulting in a mixed and malfunctioning system. Sewage collection is crucial for residential sanitation, but untreated collection significantly contributes to environmental degradation. Analyzing the simultaneous operation of both systems becomes vital for effective management. Using mathematical tools for precise and unified diagnosis and prognosis becomes imperative. However, municipal professionals and companies need more tools specifically designed to evaluate these systems in a unified way, mapping all the hydraulic connections observed in practice. This study proposes a unified simulation method for stormwater and sanitary sewer urban systems, addressing real-world scenarios and potential interferences. The primary goal is to develop a simulation method for both systems, considering system interconnections and urban layouts, involving hydrodynamic and water quality simulations. The practical application of this method, the Multilayer Hydrodynamic Simulation Method (MODCEL-MHUS), successfully identifies issues in urban water networks and suggests solutions, making it a valuable tool for urban water management and environmental engineering professionals.


Assuntos
Hidrodinâmica , Chuva , Esgotos , Drenagem Sanitária , Cidades , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Simulação por Computador , Movimentos da Água
5.
J Environ Manage ; 325(Pt B): 116543, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279771

RESUMO

The nitrogen (N) and phosphorus (P) transportation due to the anthropogenic activities have strong correlations to the water pollution events. In the highly urbanized Pearl River Delta (PRD) region of China, the main input pathways for N and P have been changed. However, their main output pathways have not yet been understood. Based on the modified export coefficient model (ECM), we have quantified the N and P outputs and identified the main factors affecting the N and P outputs in highly urbanized areas such as PRD. The results showed that the N output intensity of the PRD has increased from 3010 to 3970 kg km-2·a-1 from 2008 to 2016. The P output exhibited a similar trend, from 549 to 769 kg km-2·a-1. In terms of spatial distribution, the output intensity gradually increased from economically underdeveloped regions to economically developed regions. N and P emissions in urban wastewater increased significantly with increasing urbanization rates, with output intensities increasing by 640 kg km-2·a-1 and 141 kg km-2·a-1 from 2008 to 2016, respectively. The correlation analysis showed that population density and urbanization rate were the most relevant factors with N and P outputs intensity in highly urbanized areas. This indicates that improving the effluent standards and utilization rates of wastewater treatment plants in these regions are effective measures to control N and P output. Our findings provide some new theoretical basis for the identification and management of pollution sources in highly urbanized areas for other regions, especially developing countries.


Assuntos
Nitrogênio , Fósforo , Fósforo/análise , Nitrogênio/análise , Rios , Urbanização , Poluição Ambiental , China , Monitoramento Ambiental
6.
J Environ Manage ; 291: 112660, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971512

RESUMO

Insufficient sewage treatment facility is one important reason for wastewater entering and affecting aquatic ecosystems. The PPP mode, serving as one of the fastest-growing mechanisms for public service provision in recent decades, is considered to be an effective way to alleviate the pressure of funding shortages and to improve the efficiency of sewage treatment. However, the performance of PPPs has been questioned, especially the service quality given the inherent nature of the private sectors' pursuit of maximizing economic profit and the shortcoming of incomplete contracts. This paper evaluates the service quality, namely the environmental performance, of the PPP mode in China's urban sewage treatment sector. Based on detailed firm-level data in Jiangsu Province, China, we find that the PPP mode has improved the pollutant treatment performance, and increased operation cost and promoted sewage treatment efficiency serve as the main mechanism for the improvement of environmental performance. The research findings could help both developed and developing countries to apply and design a public-private partnerships mechanism.


Assuntos
Parcerias Público-Privadas , Esgotos , China , Ecossistema , Setor Privado
7.
J Environ Manage ; 297: 113355, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375225

RESUMO

Semi-arid agricultural soils have increasingly been subjected to urban sewage sludge (USS) applications due to accelerated soil depletion and shortages in manure supply. Research studies addressing USS reuse have mostly been conducted in cropping systems and focused on changes in topsoil properties of a given texture. Therefore, sludge-soil interactions could be largely influenced by the presence of plants, soil particle composition and depth. In this field study, two agricultural soils (sandy, S and sandy loam, SL) received simultaneously four annual USS applications of 40, 80, and 120 t ha-1 year-1 in absence of vegetation. Outcomes showed the increase of carbon and macronutrients in both soils proportionally to USS dose especially in the topsoil profile (0-20 cm). Subsoil (20-40 cm) was similarly influenced by sludge rates, showing comparable variations of fertility parameters though at significant lower levels. The depth-dependent improvement of soil fertility in both layers enhanced the microbiological properties accordingly, with significant variations in soil SL characterized by a higher clay content than soil S. Besides, positive correlations between increases in sludge dose, salinity, trace metals, and enzyme activities in both soils indicate that excessive sludge doses did not cause soil degradation or biotoxic effects under the described experimental conditions. In particular and despite high geoaccumulation indices of Ni in both soils and profiles, the global concentrations of Cu, Ni, Pb, and Zn were still below threshold levels for contaminated soils. In addition, the maintenance of pH values within neutral range and the increase of organic matter content with respect to control would have further reduced metal availability in amended soils. Therefore, we could closely investigate the effects of texture and depth on the intrinsic resilience of each soil to cope with repetitive USS applications.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Agricultura , Metais Pesados/análise , Esgotos , Solo , Poluentes do Solo/análise
8.
Huan Jing Ke Xue ; 45(7): 4052-4062, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022953

RESUMO

Microplastics are among the most difficult new pollutants to remove in wastewater treatment plants. In order to explore the occurrence form, size distribution, composition, removal efficiency, migration law, and fate behavior characteristics of microplastic particles in sewage plants, taking a sewage treatment plant in Hohhot as an example, a total of 17 sampling sites were set up. The LAS X software counted the shape, abundance, and size of microplastics and conducted a full-process analysis. The results showed that: fibrous microplastics had the highest abundance and widest distribution and were the main form of existence, accounting for 61.8% of the total abundance; the size of microplastics ranged mainly between 0 and 1.00 mm, and among the four sizes, the abundance of microplastics 0.25 to 0.50 mm in China was the highest, accounting for 32.9%. Among the eight types of plastic components detected, polyester substances (PET, PBT), cellulose, and polypropylene (PP) were the main components, accounting for 25%, 21%, and 17%, respectively. The influent abundance of the sewage plant was (73 ±5) n·L-1, the effluent abundance was (14 ±2) n·L-1, and the overall removal rate was (80.8 ±12.1)%. Among the three treatment stages of the sewage plant, only the primary treatment played a role in removal, and the abundance of microplastics surged in the secondary treatment. Different structures playing a major role in the removal of microplastics were fine grids (49.2 ±7.4)% and secondary sedimentation tanks (92.4 ±13.9)%. Microplastics mainly existed in the form of fibers, fragments, and films. The proportion of fibers was approximately 70%, and the size of fragments was mainly concentrated between 0.50 and 5.00 mm. Most fragments were in the range of 5.00 mm, accounting for 50%, making them the main form apart from fibrous. The film-like size was mostly concentrated in the range of less than 0.50 mm, accounting for more than 10%. Therefore, improving the removal of small-sized fibrous and film-like microplastics and large-sized fragmented microplastic particles can effectively reduce the pollution risk of microplastics in the environment caused by sewage plant drainage.


Assuntos
Cidades , Microplásticos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Microplásticos/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , China , Esgotos/química , Plásticos , Tamanho da Partícula , Polipropilenos , Monitoramento Ambiental
9.
Sci Rep ; 14(1): 4918, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418598

RESUMO

Phosphorus (P) removal is a significant issue in wastewater treatment. This study applies Fe-Al composite coagulant to the advanced treatment of different P forms in biological effluent. For 90% total P removal, the dosage of FeCl3-AlCl3 composite coagulant reduces by 27.19% and 43.28% than FeCl3 and AlCl3 only, respectively. Changes in effluent P forms could explain the phenomenon of composite coagulant dosage reduction. The suspended P in the effluent of composite coagulant is easier removed by precipitation than single coagulant. In this study, the hydrolysis speciations of Fe3+, Fe2+, and Al3+ at a pH range are calculated by Visual MINTEQ. Changes in the morphology of metal hydroxides correlate with P removal at pH 4-9. Besides, analyses of scanning electron microscope (SEM), Fourier transformed infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) are performed on the coagulation precipitations. Fe2+ reacts directly with P to form flocs of Fe3(PO4)2, and Al2(SO4)3 assists in the sedimentation of the small-volume flocs. Al13 is a significant hydrolysis product of Al3+, and Fe and P would substitute for the peripheral AlVI of the Al13 structure to form stable Fe-O-Al covalent bonds.

10.
Glob Chang Biol ; 19(10): 2999-3010, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23907853

RESUMO

Global nitrogen (N) enrichment has resulted in increased nitrous oxide (N(2)O) emission that greatly contributes to climate change and stratospheric ozone destruction, but little is known about the N(2)O emissions from urban river networks receiving anthropogenic N inputs. We examined N(2)O saturation and emission in the Shanghai city river network, covering 6300 km(2), over 27 months. The overall mean saturation and emission from 87 locations was 770% and 1.91 mg N(2)O-N m(-2) d(-1), respectively. Nitrous oxide (N(2)O) saturation did not exhibit a clear seasonality, but the temporal pattern was co-regulated by both water temperature and N loadings. Rivers draining through urban and suburban areas receiving more sewage N inputs had higher N(2)O saturation and emission than those in rural areas. Regression analysis indicated that water ammonium (NH(4)(+)) and dissolved oxygen (DO) level had great control on N(2)O production and were better predictors of N(2)O emission in urban watershed. About 0.29 Gg N(2)O-N yr(-1) N(2)O was emitted from the Shanghai river network annually, which was about 131% of IPCC's prediction using default emission values. Given the rapid progress of global urbanization, more study efforts, particularly on nitrification and its N(2)O yielding, are needed to better quantify the role of urban rivers in global riverine N(2)O emission.


Assuntos
Poluentes Atmosféricos/análise , Óxido Nitroso/análise , Rios/química , Poluentes Químicos da Água/análise , Compostos de Amônio/análise , China , Cidades , Monitoramento Ambiental , Nitratos/análise , Esgotos
11.
Environ Res ; 127: 56-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24216328

RESUMO

Campylobacter jejuni and Campylobacter coli are important animal-related waterborne pathogens that are distributed worldwide. To further understand Campylobacter populations in water from the Mediterranean area, the genetic diversity of environmental strains was analyzed using multilocus sequence typing (MLST). MLST was also used to determine the potential geographical differences between these bacterial strains and other campylobacters isolated worldwide. The typing study was conducted using 58 strains isolated from the Llobregat river and other water sources, such as urban sewage, animal wastewater and clinical samples. Thirty-nine different sequence types were obtained; eight of these sequences were described for the first time in this study, suggesting the presence of local strains. The identified C. jejuni strains were the most diverse population, whereas the identified C. coli strains showed a high clonal structure, which clustered most of the sequence types into a few clonal complexes. The strains were not exclusively related to specific water sources. However, comparing the identified strains with an international database showed that most of the Mediterranean strains that were exclusively isolated from environmental waters have previously been isolated from similar sources, particularly those obtained from river water. Additional studies, including those in different geographical areas using a wide range of Campylobacter sources, are required to improve the global knowledge concerning Campylobacter dissemination in the environment.


Assuntos
Campylobacter coli/genética , Campylobacter coli/isolamento & purificação , Campylobacter jejuni/genética , Campylobacter jejuni/isolamento & purificação , Região do Mediterrâneo , Tipagem de Sequências Multilocus , Filogenia , Rios/microbiologia , Esgotos/microbiologia , Águas Residuárias/microbiologia , Microbiologia da Água
12.
Ecotoxicol Environ Saf ; 95: 188-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23810366

RESUMO

The increased production of urban sewage sludge requires alternative methods for final disposal. A very promising choice is the use of sewage sludge as a fertilizer in agriculture, since it is rich in organic matter, macro and micronutrients. However, urban sewage sludge may contain toxic substances that may cause deleterious effects on the biota, water and soil, and consequently on humans. There is a lack of studies evaluating how safe the consumption of food cultivated in soils containing urban sewage sludge is. Thus, the aim of this paper was to evaluate biochemical and redox parameters in rats fed with corn produced in a soil treated with urban sewage sludge for a long term. For these experiments, maize plants were grown in soil amended with sewage sludge (rates of 5, 10 and 20 t/ha) or not (control). Four different diets were prepared with the corn grains produced in the field experiment, and rats were fed with these diets for 1, 2, 4, 8 and 12 weeks. Biochemical parameters (glucose, total cholesterol and fractions, triglycerides, aspartate aminotransferase and alanine aminotransferase) as well the redox state biomarkers such as reduced glutathione (GSH), malondialdehyde (MDA), catalase, glutathione peroxidase and butyrylcholinesterase (BuChE) were assessed. Our results show no differences in the biomarkers over 1 or 2 weeks. However, at 4 weeks BuChE activity was inhibited in rats fed with corn grown in soil amended with sewage sludge (5, 10 and 20 t/ha), while MDA levels increased. Furthermore, prolonged exposure to corn cultivated in the highest amount per hectare of sewage sludge (8 and 12 weeks) was associated with an increase in MDA levels and a decrease in GSH levels, respectively. Our findings add new evidence of the risks of consuming food grown with urban sewage sludge. However, considering that the amount and type of toxic substances present in urban sewage sludge varies considerably among different sampling areas, further studies are needed to evaluate sludge samples collected from different sources and/or undergoing different types of treatment.


Assuntos
Dieta , Fertilizantes/efeitos adversos , Estresse Oxidativo , Esgotos/efeitos adversos , Poluentes do Solo/toxicidade , Solo , Zea mays/metabolismo , Agricultura , Animais , Biomarcadores/análise , Grão Comestível/metabolismo , Fertilizantes/análise , Inocuidade dos Alimentos , Masculino , Oxirredução , Ratos , Ratos Wistar , Esgotos/química , Poluentes do Solo/análise
13.
Water Res ; 246: 120708, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827041

RESUMO

Non-Pharmaceutical Interventions (NPIs) have been widely employed globally over the past three years to control the rapid spread of coronavirus disease 2019 (COVID-19). These measures have imposed restrictions on urban residents' activities and significantly influenced sewage discharge characteristics within sewage network, particularly in densely populated cities in China. This study focused on the nodal flow diurnal patterns and sewage network operational risks before and after epidemic lockdown in Beijing from March to May in 2022. Nodal flow diurnal patterns on weekdays and weekends before and after NPIs were analyzed using measured data through statistical and mathematical methods. A sewage network model was established to simulate and analyze the operational risks based on InfoWorks ICM before and after epidemic lockdown. The main conclusions were as follows: (1) In predominantly residential areas, the total wastewater volume increased by approximately 28.76 % to 33.52 % after the implementation of strict NPIs. The morning and midday "M" peaks on normalized weekdays transformed into "N" peaks, and the morning peak time was delayed by 0.5 to 1 hour after the lockdown; (2) Following NPIs, More than 90 % of manholes' average water levels rose to varying degrees, approximately 50 % of pipe lengths exhibited a full flow state; (3) When the lockdown was in place during a hot summer day, sewage overflow phenomena were observed in 4.6 % and 9.6 % of manholes, respectively, with per capita daily drainage equivalent reaching 40-50 %. These findings hold significant implications for the proactive planning and operational management of water industry infrastructure during major emergencies.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Esgotos , Controle de Doenças Transmissíveis , Cidades , Água
14.
Environ Sci Pollut Res Int ; 30(10): 26596-26612, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36369449

RESUMO

Urban sewage sludge (USS) is increasingly being used as an alternative organic amendment in agriculture. Because USS originates mostly from human excreta, partially metabolized pharmaceuticals have also been considered in risk assessment studies after reuse. In this regard, we investigated the cumulative effect of five annual USS applications on the spread of antibiotic-resistant bacteria (ARB) and their subsequent resistance to toxic metals in two unvegetated soils. Eventually, USS contained bacterial strains resistant to all addressed antibiotics with indices of resistance varying between 0.25 for gentamicin to 38% for ampicillin and azithromycin. Sludge-amended soils showed also the emergence of resistome for all tested antibiotics compared to non-treated controls. In this regard, the increase of sludge dose generally correlated with ARB counts, while soil texture had no influence. On the other hand, the multi-antibiotic resistance (MAR) of 52 isolates selected from USS and different soil treatments was investigated for 10 most prescribed antibiotics. Nine isolates showed significant MAR index (≥ 0.3) and co-resistance to Cd, As and Be as well. However, events including an extreme flash flood and the termination of USS applications significantly disrupted ARB communities in all soil treatments. In any case, this study highlighted the risks of ARB spread in sludge-amended soils and a greater concern with the recent exacerbation of antibiotic overuse following COVID-19 outbreak.


Assuntos
COVID-19 , Poluentes do Solo , Humanos , Solo , Esgotos/microbiologia , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Metais , Poluentes do Solo/análise , Antibacterianos/farmacologia
15.
PeerJ ; 11: e15368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220523

RESUMO

To explore the influence of different types of anthropogenic activity on the rivers, we investigate the major ion composition, sources and risk assessment of the karst stream (Youyu stream and Jinzhong stream), which are heavily influenced by mining activities and urban sewage, respectively. The chemical compositions of the Youyu stream water, which is heavily influenced by mining activities, are dominated by Ca2+ and SO42-. However, the chemical compositions of the Jinzhong stream water, which is heavily influenced by urban sewage, are dominated by Ca2+ and HCO3-. The Ca2+, Mg2+ and HCO3- in Jinzhong stream are mainly derived from rock weathering, while the Youyu stream is affected by acid mine drainage, and sulfuric acid is involved in the weathering process. Ion sources analysis indicates that the Na+, K+, NO3-, and Cl- in the Jinzhong stream mainly derive from urban sewage discharge; but NO3- and Cl- of the Youyu stream mainly derive from agricultural activities, and Na+, K+ are mainly from natural sources. The element ratios analysis indicates the ratio of SO42-/Mg2+ in Youyu stream (4.61) polluted by coal mine is much higher than that in Jinzhong stream (1.29), and the ratio of (Na++K++Cl-)/Mg2+ in Jinzhong stream (1.81) polluted by urban sewage is higher than Youyu stream (0.64). Moreover, the ratios of NO3-/Na+, NO3-/K+, and NO3-/Cl- in the agriculturally polluted Youyu stream were higher than those in the Jinzhong stream. We can identify the impact of human activities on streams by ion ratios (SO42-/Mg2+, (Na++K++Cl-)/Mg2+, NO3-/Na+, NO3-/K+, and NO3-/Cl-). The health risk assessment shows the HQT and HQN for children and adults are higher in Jinzhong stream than in Youyu stream and the total HQ value (HQT) of children was higher than one at J1 in the Jinzhong stream, which shows that children in Jinzhong stream basin are threatened by non-carcinogenic pollutants. Each HQ value of F- and NO3- for children was higher than 0.1 in the tributaries into Aha Lake, indicating that the children may also be potentially endangered.


Assuntos
Efeitos Antropogênicos , Rios , Adulto , Criança , Humanos , Esgotos , Medição de Risco , China , Água
16.
Environ Sci Pollut Res Int ; 29(23): 35061-35072, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35048348

RESUMO

Advanced oxidation processes have been used for wastewater treatment due to their capacity to reduce the organic loading and for their fast reactions. In this paper, we explore the viability of isolated and sequential use of electrochemical oxidation and Fenton processes into treatment of real raw urban sewage. The electrochemical process was carried out using DSA®-Cl2 electrodes and factorial planning in order to investigate the influence of pH, current density, and electrolyte. Fenton reaction was also used and H2O2 and Fe2+ concentration effects were investigated. The efficiency was estimated by chemical oxygen demand (COD) removal and in the optimized conditions the effluent was characterized by turbidity, suspended/dissolved/total solids, ammonia, chloride ions, free chlorine, nitrite, and potassium analysis and bioassays with Artemia ssp. and Lactuca sativa. The study demonstrated that the use of electrochemical technique followed by Fenton allowed an improvement in the degradation of organic matter and reduction of turbidity and solid content, reaching reductions of 86.8, 96.4, 99.4, 56.1, and 66.7% for COD, turbidity, SS, DS, and TS, respectively. The associated treatment also contributed to the reduction of energy consumption by 74.9%, from the 23.9 kWh m-3 observed during the electrochemical treatment isolated to the 6 kWh m-3 during the associated process. All the treatments presented toxicity reduction, with the electrochemical process achieving the best results.


Assuntos
Esgotos , Poluentes Químicos da Água , Descontaminação , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
17.
Antibiotics (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289941

RESUMO

To characterize environmental antimicrobial resistance (AMR) in urban areas, extended-spectrum ß-lactamase- (ESBL)/carbapenemase-producing bacteria (EPB/CPB, respectively) from urban wastewater treatment plant effluents in Tokyo were isolated on CHROMagar ESBL plate. Complete genome sequence analysis, including plasmids, indicated that 126 CTX-M-positive isolates (31%) were identified among the 404 obtained isolates. The CTX-M-9 group was predominant (n = 65, 52%), followed by the CTX-M-1 group (n = 44, 35%). Comparative genome analysis revealed that CTX-M-27-positive E. coli O16:H5-ST131-fimH41 exhibited a stable genome structure and clonal-global dissemination. Plasmidome network analysis revealed that 304 complete plasmid sequences among 85 isolates were grouped into 14 incompatibility (Inc) network communities (Co1 to Co14). Co10 consisted of primarily IncFIA/IncFIB plasmids harboring blaCTX-M in E. coli, whereas Co12 consisted primarily of IncFIA(HI1)/Inc FIB(K) plasmids harboring blaCTX-M, blaKPC, and blaGES in Klebsiella spp. Co11 was markedly located around Co10 and Co12. Co11 exhibited blaCTX-M, blaKPC, and blaNDM, and was mainly detected in E. coli and Klebsiella spp. from human and animal sources, suggesting a mutual role of Co11 in horizontal gene transfer between E. coli and Klebsiella spp. This comprehensive resistome analysis uncovers the mode of relational transfer among bacterial species, highlighting the potential source of AMR burden on public health in urban communities.

18.
Biosensors (Basel) ; 12(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35049672

RESUMO

A magnetic-based immunoassay (MBI) combined with biotin-streptavidin amplification was proposed for butyl benzyl phthalate (BBP) investigation and risk assessment. The values of LOD (limit of detection, IC10) and IC50 were 0.57 ng/mL and 119.61 ng/mL, with a detection range of 0.57-24,977.71 ng/mL for MBI. The specificity, accuracy and precision are well demonstrated. A total of 36 environmental water samples of urban sewage from Zhenjiang, China, were collected and assessed for BBP contamination. The results show that BBP-positive levels ranged from 2.47 to 89.21 ng/mL, with a positive rate of 77.8%. The health effects of BBP in the urban sewage were within a controllable range, and the ambient severity for health (ASI) was below 1.49. The highest value of AS for ecology (ASII) was 7.43, which indicates a potential harm to ecology. The entropy value of risk quotient was below 100, the highest being 59.47, which poses a low risk to the environment and ecology, indicating that there is a need to strengthen BBP controls. The non-carcinogenic risk of BBP exposure from drinking water was higher for females than that for males, and the non-carcinogenic risk from drinking-water and bathing pathways was negligible. This study could provide an alternative method for detecting BBP and essential information for controlling BBP contamination.


Assuntos
Água Potável , Esgotos , Feminino , Humanos , Imunoensaio/métodos , Fenômenos Magnéticos , Masculino , Ácidos Ftálicos/química , Medição de Risco
19.
Infect Drug Resist ; 15: 4763-4777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36039320

RESUMO

Purpose: Urban wastewater treatment plant (WWTP) effluents, even with proper treatment, may cause antimicrobial resistance (AMR) burden, with a high frequency of acquired antimicrobial resistance genes (ARGs). The dissemination of ARGs into the environment increases the risk of infectious diseases; however, there is little direct evidence regarding their epidemiological effects. This study aimed to assess effluents from urban WWTPs around the Tama River and Tokyo Bay using metagenomic analysis of (AMR) genes (ARGs) and heavy-metal resistance genes. Methods: Metagenomic DNA-seq analysis of water samples and resistome analysis were performed. Results: The most prevalent ARG was the sulfonamide resistance gene, sul1, followed by the quaternary ammonium compound resistance gene, qacE, suggesting that basic gene sets (sul1 and ∆qacE) in the class 1 integrons are the predominant ARGs. The aminoglycoside resistance genes, aadA and aph, and macrolide resistance genes, msr(E) and mph(E), were the predominant ARGs against each antimicrobial. bla OXA and bla GES were frequently detected, whereas the bla CTX-M cluster was faintly detected. Non-metric multidimensional scaling plot analysis and canonical correspondence analysis results suggested that marked differences in ARGs could be involved in the seasonal differences; qnrS2, aac(6')-Ib, and mef(C) increased markedly in summer, whereas msr(E) was more frequently detected in winter. Heavy-metal (Hg and Cu) resistance genes (HMRGs) were significantly detected in effluents from all WWTPs. Conclusion: We characterized a baseline level of the environmental ARG/HMRG profile in the overall community, suggesting that environmental AMR surveillance, particularly in urban WWTPs, is a valuable first step in monitoring the AMR dissemination of bacteria from predominantly healthy individuals carrying notable ARG/Bs.

20.
Environ Sci Pollut Res Int ; 29(46): 70396-70407, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35589893

RESUMO

The agricultural spreading of dehydrated sewage sludge from urban sewage treatment plants is economically profitable provided that the soil agronomic quality and the absence of contamination, in particular of heavy metals, are maintained. We evaluated the variability of sludge between five treatment plants in northern Algeria. We determined parameters that account for their agronomic quality and total content of Ag, Cd, Co, Cr, Cu, Ni, Pb, Ti and Zn. The speciation of metals, which determines their bioavailability, was characterized by sequential extraction into five fractions: easily exchangeable, acid-soluble, bound to carbonates and Fe-sulphides, bound to Fe-Mn oxides, bound to organic matter or sulphides, residual. All the sludges analysed showed satisfactory properties for plant growth. High total Ni contents for three of the sludges indicated that they were not landfillable under French or Chinese regulations. Ni, however, was contained in poorly bioavailable fractions and therefore presented a low risk to soils. In contrast, the total Cu was lower than the regulatory limit values, but mainly contained in very bioavailable fractions whose accumulation over time could reach toxic levels for plants over a period of 3 to 11 years depending on the sludges. These results showed that regulations are not adapted and must take into account the bioavailability with regard to the characteristics of the soils on which to spread. The speciation of metals in the sludge has also, on the one hand, made it possible to identify the zone of the sewerage network in which the sources of contamination must be sought and, on the other hand, has given indications on the possible nature of these sources.


Assuntos
Metais Pesados , Esgotos , Cádmio/análise , Chumbo/análise , Metais Pesados/análise , Óxidos/análise , Solo , Sulfetos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA