Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(16): e2307579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044290

RESUMO

The design and fabrication of novel carbon hosts with high conductivity, accelerated electrochemical catalytic activities, and superior physical/chemical confinement on sulfur and its reaction intermediates polysulfides are essential for the construction of high-performance C/S cathodes for lithium-sulfur batteries (LSBs). In this work, a novel biofermentation coupled gel composite assembly technology is developed to prepare cross-linked carbon composite hosts consisting of conductive Rhizopus hyphae carbon fiber (RHCF) skeleton and lamellar sodium alginate carbon (SAC) uniformly implanted with polarized nanoparticles (V2O3, Ag, Co, etc.) with diameters of several nanometers. Impressively, the RHCF/SAC/V2O3 composites exhibit enhanced physical/chemical adsorption of polysulfides due to the synergistic effect between hierarchical pore structures, heteroatoms (N, P) doping, and polar V2O3 generation. Additionally, the catalytic conversion kinetics of cathodes are effectively improved by regulating the 3D carbon structure and optimizing the V2O3 catalyst. Consequently, the LSBs assembled with RHCF/SAC/V2O3-S cathode show exceptional cycle stability (capacity retention rate of 94.0% after 200 cycles at 0.1 C) and excellent rate performance (specific capacity of 578 mA h g-1 at 5 C). This work opens a new door for the fabrication of hyphae carbon composites via fermentation for electrochemical energy storage.

2.
Small ; : e2406651, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258355

RESUMO

This study investigates the electrochemical properties of MgV2O4/V2O3 composites for Aqueous Zinc-Ion Batteries (AZIBs) using both Density Functional Theory (DFT) calculations and experimental validation. DFT analysis reveals significant electron mobility and reactivity at the MgV2O4/V2O3 interface, enhancing Zn2+ storage capabilities. This theoretical prediction is confirmed experimentally by synthesizing a novel MgV2O4/V2O3 composite that demonstrates superior electrochemical performance compared to pristine phases. Notably, the transition of the MgV2O4/V2O3 composite into an amorphous structure during electrochemical cycling is pivotal, providing enhanced diffusion pathways and increased conductivity. The composite delivers a consistent specific capacity of 330.2 mAh g-1 over 50 cycles at 0.1 A g-1 and maintains 152.7 mAh g-1 at an elevated current density of 20 A g-1 after 2000 cycles, validating the synergy between DFT insights and experimental outcomes, and underscoring the potential of amorphous structures in enhancing battery performance.

3.
Molecules ; 29(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39125092

RESUMO

In response to the suboptimal electrochemical performance of low-valence vanadium oxides, Ganoderma lucidum biomass-derived carbon@V2O3 (V2O3@CGL) composites were prepared by evaporative self-assembly technology and high-temperature calcination. In the prepared composites, V2O3 effectively encapsulates CGL, serving as a support for V2O3 and enhancing electrical conductivity and structural stability. This results in improved overall performance for the composites. They revealed satisfactory electrochemical properties when assembled in aqueous zinc-ion batteries (AZIBs). The preliminary discharge specific capacity of the V2O3@CGL-2 (VOCG-2) composite electrode reached 407.87 mAh g-1 at 0.05 A g-1. After 1000 cycles, the capacity retention is 93.69% at 3 A g-1. This research underscores the feasibility of employing V2O3 and abundantly available biomass for high-performance AZIB cathodes.

4.
Angew Chem Int Ed Engl ; 63(38): e202408218, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38923694

RESUMO

Photorechargeable zinc ion batteries (PZIBs), which can directly harvest and store solar energy, are promising technologies for the development of a renewable energy society. However, the incompatibility requirement between narrow band gap and wide coverage has raised severe challenges for high-efficiency dual-functional photocathodes. Herein, half-metallic vanadium (III) oxide (V2O3) was first reported as a dual-functional photocathode for PZIBs. Theoretical and experimental results revealed its unique photoelectrical and zinc ion storage properties for capturing and storing solar energy. To this end, a synergistic protective etching strategy was developed to construct carbon superstructure-supported V2O3 nanospheres (V2O3@CSs). The half-metallic characteristics of V2O3, combined with the three-dimensional superstructure assembled by ultrathin carbon nanosheets, established rapid charge transfer networks and robust framework for efficient and stable solar-energy storage. Consequently, the V2O3@CSs photocathode delivered record zinc ion storage properties, including a photo-assisted discharge capacities of 463 mA ⋅ h ⋅ g-1 at 2.0 A ⋅ g-1 and long-term cycling stability over 3000 cycles. Notably, the PZIBs assembled using V2O3@CSs photocathodes could be photorecharged without an external circuit, exhibiting a high photo conversion efficiency (0.354 %) and photorecharge voltage (1.0 V). This study offered a promising direction for the direct capture and storage of solar energy.

5.
Nano Lett ; 22(14): 5990-5996, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35787096

RESUMO

Phase transitions are key in determining and controlling the quantum properties of correlated materials. Here, by using the combination of material synthesis and photoelectron spectroscopy, we demonstrate a genuine Mott transition undressed of any symmetry breaking side effects in the thin films of V2O3. In particular and in contrast with the bulk V2O3, we unveil the purely electronic dynamics approaching the metal-insulator transition, disentangled from the structural transformation that is prevented by the residual substrate-induced strain. On approaching the transition, the spectral signal evolves slowly over a wide temperature range, the Fermi wave-vector does not change, and the critical temperature is lower than the one reported for the bulk. Our findings are fundamental in demonstrating the universal benchmarks of a genuine nonsymmetry breaking Mott transition, extendable to a large array of correlated quantum systems, and hold promise of exploiting the metal-insulator transition by implementing V2O3 thin films in devices.

6.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903389

RESUMO

In terms of new-generation energy-storing devices, aqueous zinc-ion batteries (AZIBs) are becoming the prime candidates because of their inexpensive nature, inherent safety, environmental benignity and abundant resources. Nevertheless, due to a restrained selection of cathodes, AZIBs often perform unsatisfactorily under long-life cycling and high-rate conditions. Consequently, we propose a facile evaporation-induced self-assembly technique for preparing V2O3@carbonized dictyophora (V2O3@CD) composites, utilizing economical and easily available biomass dictyophora as carbon sources and NH4VO3 as metal sources. When assembled in AZIBs, the V2O3@CD exhibits a high initial discharge capacity of 281.9 mAh g-1 at 50 mA g-1. The discharge capacity is still up to 151.9 mAh g-1 after 1000 cycles at 1 A g-1, showing excellent long-cycle durability. The extraordinary high electrochemical effectiveness of V2O3@CD could be mainly attributed to the formation of porous carbonized dictyophora frame. The formed porous carbon skeleton can ensure efficient electron transport and prevent V2O3 from losing electrical contact due to volume changes caused by Zn2+ intercalation/deintercalation. The strategy of metal-oxide-filled carbonized biomass material may provide insights into developing high-performance AZIBs and other potential energy storage devices, with a wide application range.

7.
Angew Chem Int Ed Engl ; 62(10): e202217275, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629025

RESUMO

Alkaline fuel cells can permit the adoption of platinum group metal-free (PGM-free) catalysts and cheap bipolar plates, thus further lowering the cost. With the exploration of PGM-free hydrogen oxidation reaction (HOR) catalysts, nickel-based compounds have been considered as the most promising HOR catalysts in alkali. Here we report an interfacial engineering through the formation of nickel-vanadium oxide (Ni/V2 O3 ) heterostructures to activate Ni for efficient HOR catalysis in alkali. The strong electron transfer from Ni to V2 O3 could modulate the electronic structure of Ni sites. The optimal Ni/V2 O3 catalyst exhibits a high intrinsic activity of 0.038 mA cm-2 and outstanding stability. Experimental and theoretical studies reveal that Ni/V2 O3 interface as the active sites can enable to optimize the hydrogen and hydroxyl bindings, as well as protect metallic Ni from extensive oxidation, thus achieving the notable activity and durability.

8.
Small ; 17(13): e2005769, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33690957

RESUMO

The Mott-Schottky heterojunction formed at the interface of ultrafine metallic Ni and semiconducting V2 O3 nanoparticles is constructed, and the heterojunctions are "knitted" into the tulle-like monolayer nanosheets on nickel foam (NF). The greatly reduced particle sizes of both Ni and V2 O3 on the Mott-Schottky heterojunction highly enhance the number of Schottky heterojunctions per unit area of the materials. Moreover, arranging the heterojunctions into the monolayer nanosheets makes the heterojunctions repeat and expose to the electrolyte sufficiently. The Schottky heterojunctions are like countless self-powered charge transfer workstations embedded in the tulle-like monolayer nanosheets, promoting maximum of the materials to participate into the electron transfer and become catalytic active sites. In addition, the tulle-like monolayer nanosheet structure can assist in pumping liquid phase electrolyte to the surface of catalysts, owing to the capillary force. The V2 O3 /Ni/NF Mott-Schottky catalyst exhibits excellent hydrogen evolution reaction (HER) performance with a low η10 of 54 mV and needs -107 mV to get the current density of -100 mA cm-2 . Furthermore, V2 O3 /Ni/NF Schottky electrocatalyst exhibits excellent urea oxidation reaction activity: 1.40, 1.51, and 1.61 V versus reversible hydrogen electrode (RHE) voltage are required to reach a current density of 100, 500, and 1000 mA cm-2 , respectively.

9.
Small ; 16(47): e2005302, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33136347

RESUMO

Free-standing electrodes with high energy density and long life are of critical importance to the development of lithium-ion batteries (LIBs) for flexible/wearable electronic devices. Herein, the free-standing and foldable V2 O3 /multichannel carbon nanofibers (V2 O3 /MCCNFs) composites are prepared via electrospinning and subsequent carbonization. Such V2 O3 /MCCNFs electrode delivers a superior capacity of 881.1 mAh g-1 at 0.1 A g-1 after 240 cycles. More importantly, the ultralong lifespan is achieved with a high capacity of 487.8 mAh g-1 even after 5000 cycles at a high current density of 5 A g-1 with only 0.00323% decay rate, which shows the best performance among the reported V2 O3 -based anodes and other metal oxides based free-standing anodes. Furthermore, this flexible electrode is further applied to the pouch cell, which exhibits prominent capacity of 348.3 mAh g-1 after 500 cycles at 1 A g-1 with 0.094% decay per cycle. The unprecedented performance can be ascribed to synergetic contributions of V2 O3 and multichannel carbon nanofibers, which not only promote the penetration of electrolyte and reduce the transport length of Li+ , but also increase active material/electrolyte contact area and buffer the volume change. This work paves the way to develop free-standing electrode for flexible/wearable electronic devices with ultralong lifespan.

10.
Chemistry ; 25(9): 2234-2241, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30521116

RESUMO

Developing high-efficiency electromagnetic (EM) wave absorbing materials with light weight, thin thickness, and wide absorption bandwidth is highly desirable for ever-developing electronic and telecommunication devices. Herein, hierarchical metal-organic framework (MOF)-derived Co/C@V2 O3 hollow spheres were designed and synthesized through a facile hydrothermal, precipitation, and pyrolysis method. The composite exhibits both excellent impedance matching and light weight due to the rational combination of hollow V2 O3 spheres and porous Co/C. Additionally, multiple components enable a large dielectric and magnetic loss of the composite, giving rise to enhanced EM wave absorption performance with a maximum reflection loss (RL) of -40.1 dB and a broad effective absorption bandwidth (RL < -10 dB) of 4.64 GHz at a small thickness of 1.5 mm. This work provides insights into the design of hierarchical hollow and porous composites as thin and lightweight EM wave absorbers with efficient absorption, which can also be extended to energy storage, catalysis, and sensing.

11.
J Environ Sci (China) ; 67: 96-103, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29778178

RESUMO

Batch experiments were performed to derive the rate laws for the proton-promoted dissolution of the main vanadium (III, IV and V) oxides at pH 3.1-10.0. The release rates of vanadium are closely related to the aqueous pH, and several obvious differences were observed in the release behavior of vanadium from the dissolution of V2O5 and vanadium(III, IV) oxides. In the first 2hr, the release rates of vanadium from V2O3 were r=1.14·([H+])0.269 at pH 3.0-6.0 and r=0.016·([H+])-0.048 at pH 6.0-10.0; the release rates from VO2 were r=0.362·([H+])0.129 at pH 3.0-6.0 and r=0.017·([H+])-0.097 at pH 6.0-10.0; and the release rates from V2O5 were r=0.131·([H+])-0.104 at pH 3.1-10.0. The release rates of vanadium from the three oxides increased with increasing temperature, and the effect of temperature was different at pH 3.8, pH 6.0 and pH 7.7. The activation energies of vanadium (III, IV and V) oxides (33.4-87.5kJ/mol) were determined at pH 3.8, pH6.0 and pH 7.7, showing that the release of vanadium from dissolution of vanadium oxides follows a surface-controlled reaction mechanism. The release rates of vanadium increased with increasing vanadium oxides dose, albeit not proportionally. This study, as part of a broader study of the release behavior of vanadium, can help to elucidate the pollution problem of vanadium and to clarify the fate of vanadium in the environment.


Assuntos
Modelos Químicos , Vanádio/química , Concentração de Íons de Hidrogênio , Cinética , Compostos Orgânicos , Óxidos , Temperatura
12.
ACS Appl Mater Interfaces ; 16(15): 18812-18823, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573821

RESUMO

When considered as a cathode candidate for aqueous Zn-ion batteries, V2O3 faces several problems, such as inherently unsuitable structure, fast structural degradation, and sluggish charge transport kinetics. In this paper, we report the synthesis of a V2O3 intimately coupled carbon aerogel by a controllable ion impregnation and solid-state reaction strategy using bacterial cellulose and ammonium metavanadate as raw materials. In this newly designed structure, the carbonized carbon fiber network provides fast ion and electron transport channels. More importantly, the cellulose aerogel functions as a dispersing and supporting skeleton to realize the particle size reduction, uniform distribution, and amorphous features of V2O3. These advantages work together to realize adequate electrochemical activation during the initial charging process and shorter transport distance and faster transport kinetics of Zn2+. The batteries based on the V2O3/CNF aerogel exhibit a high-rate performance and an excellent cycling stability. At a current density of 20 A g-1, the V2O3/CNF aerogel delivers a specific capacity of 159.8 mAh g-1, and it demonstrates an exceptionally long life span over 2000 cycles at 12 A g-1. Furthermore, the electrodes with active material loadings as high as 10 mg cm-2 still deliver appreciable specific capacities of 257 mAh g-1 at 0.1 A g-1.

13.
ACS Appl Mater Interfaces ; 16(15): 18833-18842, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574180

RESUMO

Sodium-ion batteries (SIBs) offer several benefits, including cost-efficiency and fast-charging characteristics, positioning them as attractive substitutes for lithium-ion batteries in energy storage applications. However, the inferior capacity and cycling stability of electrodes in SIBs necessitate further enhancement due to sluggish reaction kinetics. In this respect, the utilization of heterostructures, which can provide an inherent electric field and abundant active sites on the surface, has emerged as a promising strategy for augmenting the cycling stability and rate features of the electrodes. This work delves into the utilization of V1.13Se2/V2O3 heterostructure materials as anodes, initially fabricated via a simplified one-step solid-state sintering technique. The high pseudocapacitance and low characteristic relaxation time constant give the V1.13Se2/V2O3 heterostructure impressive properties, such as a high capacity of 328.5 mAh g-1 even after 1500 cycles at a high current density of 2 A g-1 and rate capability of 278.9 mAh g-1 at 5 A g-1. Moreover, the assembled sodium-ion full battery delivers a capacity of 118.5 mAh g-1 after 1000 cycles at 1 A g-1. These findings provide novel insight and guidance for the rapid synthesis of heterojunction materials and the advancement of SIBs.

14.
Small Methods ; : e2300205, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37283477

RESUMO

The drawbacks of poor electronic conductivity and structural instability during the cycling process limit the electrochemical property of vanadium-based cathode materials for aqueous zinc-ion batteries. In addition, continuous growth and accumulation of zinc dendrites can puncture the separator and cause an internal short circuit in the battery. In this work, a unique multidimensional nanocomposite is designed by a facile freeze-drying method with subsequent calcination, consisting of V2 O3 nanosheets and single-walled carbon nanohorns (SWCNHs) crosslinked together and wrapped by reduced graphene oxide (rGO). The multidimensional structure can largely enhance the structural stability and electronic conductivity of the electrode material. Besides, additive Na2 SO4 in the ZnSO4 aqueous electrolyte not only prevents the dissolution of cathode materials but also suppresses the Zn dendrite growth. After considering the influence of additive concentration on ionic conductivity and electrostatic force for electrolyte, V2 O3 @SWCNHs@rGO electrode delivers a high initial discharge capacity of 422 mAh g-1 at 0.2 A g-1 and a high discharge capacity of 283 mAh g-1 after 1000 cycles at 5 A g-1 in 2 m ZnSO4 + 2 m Na2 SO4 electrolyte. Experimental techniques reveal that the electrochemical reaction mechanism can be expressed as the reversible phase transformation between V2 O5 and V2 O3 with Zn3 (VO4 )2 .

15.
ACS Appl Mater Interfaces ; 15(17): 20876-20884, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083362

RESUMO

Vanadium oxides attract increasing research interests for constructing the cathode of aqueous zinc-ion batteries (ZIBs) because of high theoretical capacity, but the low intrinsic conductivity and unstable phase changes during the charge/discharge process pose great challenges for their adoption. In this work, V2O3@C microspheres were developed to achieve enhanced conductivity and improved stability of phase changes. Compounding vanadium oxides and conductive carbon through the in-situ carbonization led to significant improvement of the cathode materials. ZIBs prepared with V2O3@C cathodes produce a specific capacity of 420 mA h g-1 at 0.2 A g-1. A reversible capacity of 132 mA h g-1 was achieved at 21.0 A g-1. After 2000 cycles, the electrode could still deliver a capacity of 202 mA h g-1 at the current of 5.0 A g-1. Besides, the energy density of batteries constructed with the thus-prepared electrodes was about 294 W h kg-1 at 148 W kg-1 power. The in-situ compounding of V2O3 and carbon resulted in a microstructure that facilitated the stable phase transformation of ZnxV2O5-a·nH2O (ZnVOH), which provided more Zn2+ storage activity than the original phase before electrochemical activation. Moreover, the in-situ compositing strategy presents a simple route to the development of ZIB cathodes with promising performance.

16.
ACS Appl Mater Interfaces ; 15(48): 55734-55744, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37985366

RESUMO

Molybdenum sulfide has been widely investigated as a prospective anode material for Li+/Na+ storage because of its unique layered structure and high theoretical capacity. However, the enormous volume variation and poor conductivity limit the development of molybdenum sulfide. The rational design of a heterogeneous interface is of great importance to improve the structure stability and electrical conductivity of electrode materials. Herein, a high-temperature mixing method is implemented in the hydrothermal process to synthesize the hybrid structure of MoS2/V2O3@carbon-graphene (MoS2/V2O3@C-rGO). The MoS2/V2O3@C-rGO composites exhibit superior Li+/Na+ storage performance due to the construction of the interface between the MoS2 and V2O3 components and the introduction of carbon materials, delivering a prominent reversible capacity of 564 mAh g-1 at 1 A g-1 after 600 cycles for lithium-ion batteries and 376.3 mAh g-1 at 1 A g-1 after 450 cycles for sodium-ion batteries. Theoretical calculations confirm that the construction of the interface between the MoS2 and V2O3 components can accelerate the reaction kinetics and enhance the charge-ionic transport of molybdenum sulfide. The results illustrate that interfacial engineering may be an effective guide to obtain high-performance electrode materials for Li+/Na+ storage.

17.
J Colloid Interface Sci ; 639: 68-77, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36804794

RESUMO

The design and preparation of heterogeneous structures of dielectric materials has been the mainstream direction for the construction of superior microwave absorption materials (MAMs). We report a facile and efficient procedure combination of hydrothermal process and subsequent heat treatment for successfully prepared bilayer core-shell structure self-assembled V2O3 microspheres (BCSV). The microstructure, defects, dielectric properties and microwave absorption (MA) properties of BCSV were systematically investigated, and the effect of bilayer core-shell structure on the MA properties was discussed. By varying the heat treatment temperature, it is feasible to regulate the thickness of V2O3 bilayer and its unique structure defects, hence enhancing the attenuation and multiple polarization loss of electromagnetic waves inside the microspheres. Self-assembled V2O3 microspheres with bilayer core-shell structure exhibit high-performance MA property. The reflection loss (RL) gets to - 67.12 dB at 11.69 GHz covering the whole X-band after heat treatment at 600 °C, and the broad effective absorption bandwidth is 5.49 GHz with a thickness of 2.20 mm. The conductivity loss, multiple polarization loss and dielectric loss are ascribed to the specific bilayer core-shell structure. Thus, our work provides a good perspective on how to create vanadium oxide-based MAMs with effective absorption and broad bandwidth.

18.
J Phys Condens Matter ; 34(49)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36220016

RESUMO

In this work we present a temperature and angular dependent study of the structural and magnetic properties in highly crystalline V2O3/Ni/Zr magnetic heterostructure films. Our investigation focuses on the coupling between the ferromagnetic Ni layer and V2O3layer which undergoes an antiferromagnetic/paramagnetic phase transition coupled to the structural phase transition of the material at around 150 K. Structural investigations using x-ray diffraction reveal highly crystalline films of a quality which has previously not been reported in the literature. The Ni layers display an absence of in-plane magnetic anisotropy owing to the highly textured (1 1 1) layering of the Ni films on the underlying V2O3(0 0 0 1) oriented layer. During the transition we observe a strain related enhancement of the coercivity and the onset of a weak exchange bias for cooling under an external magnetic field. Heating the films to above the transition temperature, the exchange bias in the Ni is removed and can be reversed upon subsequent cooling under an inverted external magnetic field. Using temperature dependent polarized neutron reflectometry we investigate the film structure at the interface, capturing the magnetic and nuclear profiles.

19.
Front Chem ; 10: 956610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118320

RESUMO

Searching for stable cathodes is of paramount importance to the commercial development of low-cost and safe aqueous Zn-ion batteries (AZIBs). V2O3 is a good candidate for AZIB cathodes but has unsatisfied cycling stability. Herein, we solve the stability issue of a V2O3 cathode by coating a robust carbon shell. Strong evidence was provided that V2O3 was oxidized to favorable V2O5·nH2O during charging and the carbon shell could promote the oxidation of V2O3 to V2O5·nH2O. The discharge capacity was increased from ∼45 mA h g-1 to 336 mA h g-1 after V2O3 was oxidized to V2O5·nH2O, indicating a higher Zn2+-storage capability of V2O5·nH2O than V2O3. In addition, the rate-capability and long-term cycling performance are greatly enhanced after coating carbon shells on the surface of V2O3 nanorods. Therefore, the presented strategy of introducing carbon shells and fundamental insights into the favorable role of carbon shells in this study contribute to the advancement of highly stable AZIBs.

20.
ACS Appl Mater Interfaces ; 13(10): 12149-12158, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33656850

RESUMO

Vanadium oxide (V2O3) has been considered as a promising anode material for potassium-ion batteries (PIBs), but challenging as well for the low electron/ion conductivity and poor structural stability. To tackle these issues, herein, a novel sheetlike hybrid nanoarchitecture constructed by uniformly encapsulating V2O3 nanoparticles in amorphous carbon nanosheets (V2O3@C) with the generation of C-O-V bonding is presented. Such a subtle architecture effectively facilitates the infiltration of electrolyte, relieves the mechanical strain, and reduces the potassium-ion diffusion distance during the repetitive charging/discharging processes. The generated C-O-V bonding not only accelerated charge transfer across the carbon-V2O3 interface but also strengthened the structural stability. Benefiting from the synergistic effects, the as-prepared V2O3@C nanosheets display fast and durable potassium storage behaviors with a reversible capacity of 116.6 mAh g-1 delivered at 5 A g-1, and a specific capacity of 147.9 mAh g-1 retained after 1800 cycles at a high current density of 2 A g-1. Moreover, the insertion/extraction mechanism of V2O3@C nanosheets in potassium-ion storage is systematically demonstrated by electrochemical analysis and ex situ technologies. This study will shed light on the fabricating of other metal oxides anodes for high-performance PIBs and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA