Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 68(3): 495-509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157022

RESUMO

In this study, a sensitivity analysis on a VECTRI dynamical model of malaria transmission is investigated to determine the relative importance of model parameters to disease transmission and prevalence. Apart from being most climatic prone, Odisha is a highly endemic state for malaria in India. The lack in sufficient modeling studies severely impacts the malarial process studies which further hinder the possibility of malaria early warning systems and preventive measures to be undertaken beforehand. Therefore, modeling studies and investigating the relationship between malaria transmission process studies and associated climatic factors are the need of the hour. Environmental conditions have pronounced effects on the malaria transmission dynamics and abundance of the poikilothermic vectors, but the exact relationship of sensitivity for these parameters is not well established. Sensitivity analysis is a useful tool for ascertaining model responses to different input variables. Therefore, in order to perform the requisite study, a dynamical model, VECTRI, is utilized. The study period ranges from 2000 to 2013, where several sensitivity tests are performed using different model parameters such as infiltration and evaporation rate loss of ponds, degree-days for parasite development, threshold temperature for parasite development, threshold temperature for egg development in the vector, and maximum and minimum temperature for larvae survival. The experiments suggest that the lower value of minimum temperature for larvae survival (rlarv_tmin), i.e., 16 °C, provides higher vector density and entomological inoculation rate (EIR) values. EIR reaches its maximum, when the threshold temperature for parasite development (rtsporo) is 22 °C and degree-days for parasite development (dsporo) is 8 degree-days. No change is observed in the vector density; even when rtsporo is 30 °C, values of EIR are close to 0. A successive increment of infiltration and evaporation rate loss of ponds (rwaterfrac evap126) values from 130 to 200 mm/day result in approximately 5% consistent decline in vector density and EIR. The study concludes that the most sensitive parameters are dsporo, rlarv_tmin, and rwaterfrac evap126. The VECTRI model is rather insensitive to maximum temperature for larvae survival (rlarv_tmin) for vector density and EIR variables. Further certain modifications and improvements are required in VECTRI to predict out variables like vector density and EIR more accurately in highly endemic region.


Assuntos
Vidro , Malária , Animais , Prevalência , Malária/epidemiologia , Malária/prevenção & controle , Temperatura , Índia/epidemiologia , Larva
2.
Int J Biometeorol ; 67(1): 93-105, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36258135

RESUMO

Malaria is a critical health issue across the world and especially in Africa. Studies based on dynamical models helped to understand inter-linkages between this illness and climate. In this study, we evaluated the ability of the VECTRI community vector malaria model to simulate the spread of malaria in Cameroon using rainfall and temperature data from FEWS-ARC2 and ERA-interim, respectively. In addition, we simulated the model using five results of the dynamical downscaling of the regional climate model RCA4 within two time frames named near future (2035-2065) and far future (2071-2100), aiming to explore the potential effects of global warming on the malaria propagation over Cameroon. The evaluated metrics include the risk maps of the entomological inoculation rate (EIR) and the parasite ratio (PR). During the historical period (1985-2005), the model satisfactorily reproduces the observed PR and EIR. Results of projections reveal that under global warming, heterogeneous changes feature the study area, with localized increases or decreases in PR and EIR. As the level of radiative forcing increases (from 2.6 to 8.5 W.m-2), the magnitude of change in PR and EIR also gradually intensifies. The occurrence of transmission peaks is projected in the temperature range of 26-28 °C. Moreover, PR and EIR vary depending on the three agro-climatic regions of the study area. VECTRI still needs to integrate other aspects of disease transmission, such as population mobility and intervention strategies, in order to be more relevant to support actions of decision-makers and policy makers.


Assuntos
Aquecimento Global , Malária , Humanos , Camarões/epidemiologia , Benchmarking , Malária/epidemiologia
3.
Int J Biometeorol ; 65(7): 1161-1175, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33738587

RESUMO

Efforts have been made to quantify the spatio-temporal malaria transmission intensity over India using the dynamical malaria model, namely, Vector-borne Disease Community Model of International Centre for Theoretical Physics Trieste (VECTRI). The likely effect of climate change in the variability of malaria transmission intensity over different parts of India is also investigated. The Historical data and future projection scenarios of the rainfall and temperature derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5) model output are used for this purpose. The Entomological Inoculation Rate (EIR) and Vector are taken as quantifiers of malaria transmission intensity. It is shown that the maximum number of malaria cases over India occur during the Sept-Oct months, whereas the minimum during the Feb-Apr months. The malaria transmission intensity as well as length of transmission season over India is likely to increase in the future climate as a result of global warming.


Assuntos
Mudança Climática , Malária , Humanos , Índia/epidemiologia , Malária/epidemiologia , Estações do Ano , Temperatura
4.
Artigo em Inglês | MEDLINE | ID: mdl-38063532

RESUMO

Malaria continues to be a major public health concern with a substantial burden in Africa. Even though it has been widely demonstrated that malaria transmission is climate-driven, there have been very few studies assessing the relationship between climate variables and malaria transmission in Côte d'Ivoire. We used the VECTRI model to predict malaria transmission in southern Côte d'Ivoire. First, we tested the suitability of VECTRI in modeling malaria transmission using ERA5 temperature data and ARC2 rainfall data. We then used the projected climatic data pertaining to 2030, 2050, and 2080 from a set of 14 simulations from the CORDEX-Africa database to compute VECTRI outputs. The entomological inoculation rate (EIR) from the VECTRI model was well correlated with the observed malaria cases from 2010 to 2019, including the peaks of malaria cases and the EIR. However, the correlation between the two parameters was not statistically significant. The VECTRI model predicted an increase in malaria transmissions in both scenarios (RCP8.5 and RCP4.5) for the time period 2030 to 2080. The monthly EIR for RCP8.5 was very high (1.74 to 1131.71 bites/person) compared to RCP4.5 (0.48 to 908 bites/person). These findings call for greater efforts to control malaria that take into account the impact of climatic factors.


Assuntos
Malária , Humanos , Côte d'Ivoire/epidemiologia , Malária/epidemiologia , Temperatura , Saúde Pública
5.
Trop Med Infect Dis ; 8(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37368728

RESUMO

On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP's community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983-2005; near future: 2006-2028; medium term: 2030-2052; and far future: 2077-2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1-3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August-October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1-3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA