Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2425: 479-495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188643

RESUMO

Industrial needs and regulatory requirements have played a significant role in accelerating the use of nontesting methods including in silico tools as alternatives to animal testing. The main interest is not solely on the use of in silico tools, or in read-across, but on better toxicological safety assessment of substances, and for this purpose more advanced, integrated strategies have to be implemented. VEGAHUB wants to promote this broader view, not necessarily focused on a specific approach. Applying multiple tools and complementary approaches instead of one technique may provide more elements for a more robust evaluation, but at the same time it is important to have a conceptual scheme to integrate multiple, heterogeneous lines of evidence. We will show how the user can benefit from the diversity of tools available within the platform VEGAHUB for assessing the biological properties of chemical substances on an example of (non)mutagenicity.


Assuntos
Mutagênicos , Animais , Simulação por Computador , Mutagênicos/química , Medição de Risco
2.
J Hazard Mater ; 385: 121638, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31757721

RESUMO

The evaluation of genotoxicity is a fundamental part of the safety assessment of chemicals due to the relevance of the potential health effects of genotoxicants. Among the testing methods available, the in vitro micronucleus assay with mammalian cells is one of the most used and required by regulations targeting several industrial sectors such as the cosmetic industry and food-related sectors. As an alternative to the testing methods, in recent years, lots in silico methods were developed to predict the genotoxicity of chemicals, including models for the Ames mutagenicity test, the in vitro chromosomal aberrations and the in vivo micronucleus assay. We developed several in silico models for the prediction of genotoxicity as reflected by the in vitro micronucleus assay. The resulting models include both statistical and knowledge-based models. The most promising model is the one based on fragments extracted with the SARpy platform. More than 100 structural alerts were extracted, including also fragments associated with the non-genotoxic activity. The model is characterized by high accuracy and the lowest false negative rate, making this tool suitable for chemical screening according to the regulators' needs. The SARpy model will be implemented on the VEGA platform (https://www.vegahub.eu) and will be freely available.


Assuntos
Modelos Biológicos , Mutagênicos/toxicidade , Compostos Orgânicos/toxicidade , Técnicas In Vitro , Testes para Micronúcleos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA