Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Brain ; 147(4): 1457-1473, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38066620

RESUMO

Acyl-CoA binding domain containing 5 (ACBD5) is a critical player in handling very long chain fatty acids (VLCFA) en route for peroxisomal ß-oxidation. Mutations in ACBD5 lead to the accumulation of VLCFA and patients present retinal dystrophy, ataxia, psychomotor delay and a severe leukodystrophy. Using CRISPR/Cas9, we generated and characterized an Acbd5 Gly357* mutant allele. Gly357* mutant mice recapitulated key features of the human disorder, including reduced survival, impaired locomotion and reflexes, loss of photoreceptors, and demyelination. The ataxic presentation of Gly357* mice involved the loss of cerebellar Purkinje cells and a giant axonopathy throughout the CNS. Lipidomic studies provided evidence for the extensive lipid dysregulation caused by VLCFA accumulation. Following a proteomic survey, functional studies in neurons treated with VLCFA unravelled a deregulated cytoskeleton with reduced actin dynamics and increased neuronal filopodia. We also show that an adeno-associated virus-mediated gene delivery ameliorated the gait phenotypes and the giant axonopathy, also improving myelination and astrocyte reactivity. Collectively, we established a mouse model with significance for VLCFA-related disorders. The development of relevant neuropathological outcomes enabled the understanding of mechanisms modulated by VLCFA and the evaluation of the efficacy of preclinical therapeutic interventions.


Assuntos
Adrenoleucodistrofia , Ácidos Graxos , Humanos , Camundongos , Animais , Ácidos Graxos/metabolismo , Dependovirus/genética , Proteômica , Ataxia , Terapia Genética , Adrenoleucodistrofia/genética
2.
Brain ; 147(6): 2069-2084, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38763511

RESUMO

The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Dinaminas , Dinâmica Mitocondrial , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patologia , Adrenoleucodistrofia/genética , Animais , Dinâmica Mitocondrial/fisiologia , Humanos , Camundongos , Dinaminas/metabolismo , Dinaminas/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Caenorhabditis elegans , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Axônios/patologia , Axônios/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Masculino , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Tratos Piramidais/patologia , Tratos Piramidais/metabolismo , Fragmentos de Peptídeos , GTP Fosfo-Hidrolases
3.
J Lipid Res ; 65(3): 100516, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320654

RESUMO

The gold-standard diagnostic test for peroxisomal disorders (PDs) is plasma concentration analysis of very long-chain fatty acids (VLCFAs). However, this method's time-consuming nature and limitations in cases which present normal VLCFA levels necessitates alternative approaches. The analysis of C26:0-lysophosphatydylcholine (C26:0-LPC) in dried blood spot samples by tandem-mass spectrometry (MS/MS) has successfully been implemented in certain newborn screening programs to diagnose X-linked adrenoleukodystrophy (ALD). However, the diagnostic potential of very long-chain LPCs concentrations in plasma remains poorly understood. This study sought to evaluate the diagnostic performance of C26:0-LPC and other very long-chain LPCs, comparing them to VLCFA analysis in plasma. The study, which included 330 individuals affected by a peroxisomal ß-oxidation deficiency and 407 control individuals, revealed that C26:0- and C24:0-LPC concentrations demonstrated the highest diagnostic accuracy (98.8% and 98.4%, respectively), outperforming VLCFA when C26:0/C22:0 and C24:0/C22:0 ratios were combined (98.1%). Combining C24:0- and C26:0-LPC gave the highest sensitivity (99.7%), with ALD females exhibiting notably higher sensitivity compared with the VLCFA ratio combination (98.7% vs. 93.5%, respectively). In contrast, C22:0-LPC exhibited suboptimal performance, primarily due to its low sensitivity (75%), but we identified a potential use to help distinguish between ALD and Zellweger spectrum disorders. In summary, MS/MS analysis of plasma C24:0- and C26:0-LPC concentrations represents a rapid and straightforward approach to diagnose PDs, demonstrating superior diagnostic accuracy, particularly in ALD females, compared with conventional VLCFA biomarkers. We strongly recommend integrating very-long chain LPC plasma analysis in the diagnostic evaluation of individuals suspected of having a PD.


Assuntos
Adrenoleucodistrofia , Lisofosfatidilcolinas , Recém-Nascido , Feminino , Humanos , Espectrometria de Massas em Tandem , Adrenoleucodistrofia/diagnóstico , Triagem Neonatal/métodos , Biomarcadores , Ácidos Graxos não Esterificados , Ácidos Graxos
4.
Development ; 148(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495212

RESUMO

The differentiation of distinct cell types in appropriate patterns is a fundamental process in the development of multicellular organisms. In Arabidopsis thaliana, protoderm/epidermis differentiates as a single cell layer at the outermost position. However, little is known about the molecular nature of the positional signals that achieve correct epidermal cell differentiation. Here, we propose that very-long-chain fatty acid-containing ceramides (VLCFA-Cers) mediate positional signals by stimulating the function of ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1), a master regulator of protoderm/epidermis differentiation, during lateral root development. We show that VLCFA-Cers, which are synthesized predominantly in the outermost cells, bind to the lipid-binding domain of ATML1. Importantly, this cell type-specific protein-lipid association alters the activity of ATML1 protein and consequently restricts its expression to the protoderm/epidermis through a transcriptional feedback loop. Furthermore, establishment of a compartment, enriched with VLCFA-containing sphingolipids, at the outer lateral membrane facing the external environment may function as a determinant of protodermal cell fate. Taken together, our results indicate that VLCFA-Cers play a pivotal role in directing protoderm/epidermis differentiation by mediating positional signals to ATML1.This article has an associated 'The people behind the papers' interview.


Assuntos
Arabidopsis/citologia , Diferenciação Celular , Ceramidas/metabolismo , Epiderme Vegetal/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Linhagem da Célula , Membrana Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Ligantes , Modelos Biológicos , Epiderme Vegetal/genética , Raízes de Plantas/embriologia , Raízes de Plantas/metabolismo , Domínios Proteicos , Estabilidade Proteica , Esfingolipídeos/metabolismo
5.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570120

RESUMO

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Assuntos
Bass , Infecções por Vírus de DNA , Elongases de Ácidos Graxos , Doenças dos Peixes , Proteínas de Peixes , Metabolismo dos Lipídeos , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Bass/imunologia , Bass/genética , Elongases de Ácidos Graxos/genética , Nodaviridae/fisiologia , Regulação da Expressão Gênica , Acetiltransferases/genética , Acetiltransferases/metabolismo , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Perfilação da Expressão Gênica/veterinária , Iridoviridae/fisiologia , Iridovirus/fisiologia , Filogenia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Reprogramação Metabólica
6.
Plant J ; 111(3): 785-799, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653239

RESUMO

The BRASSINAZOLE-RESISTANT (BZR) transcription factor is a core component of brassinosteroid (BR) signaling and is involved in the development of many plant species. BR is essential for the initiation and elongation of cotton fibers. However, the mechanism of BR-regulating fiber development and the function of BZR is poorly understood in Gossypium hirsutum L. (cotton). Here, we identified a BZR family transcription factor protein referred to as GhBZR3 in cotton. Overexpression of GhBZR3 in Arabidopsis caused shorter root hair length, hypocotyl length, and hypocotyl cell length, indicating that GhBZR3 negatively regulates cell elongation. Pathway enrichment analysis from VIGS-GhBZR3 cotton plants found that fatty acid metabolism and degradation might be the regulatory pathway that is primarily controlled by GhBZR3. Silencing GhBZR3 expression in cotton resulted in taller plant height as well as longer fibers. The very-long-chain fatty acid (VLCFA) content was also significantly increased in silenced GhBZR3 plants compared with the wild type. The GhKCS13 promoter, a key gene for VLCFA biosynthesis, contains two GhBZR3 binding sites. The results of yeast one-hybrid, electrophoretic mobility shift, and luciferase assays revealed that GhBZR3 directly interacted with the GhKCS13 promoter to suppress gene expression. Taken together, these results indicate that GhBZR3 negatively regulates cotton fiber development by reducing VLCFA biosynthesis. This study not only deepens our understanding of GhBZR3 function in cotton fiber development, but also highlights the potential of improving cotton fiber length and plant growth using GhBZR3 and its related genes in future cotton breeding programs.


Assuntos
Arabidopsis , Fibra de Algodão , Arabidopsis/genética , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(28): 14325-14330, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235573

RESUMO

Lateral root organogenesis plays an essential role in elaborating plant root system architecture. In Arabidopsis, the AP2 family transcription factor PUCHI controls cell proliferation in lateral root primordia. To identify potential targets of PUCHI, we analyzed a time course transcriptomic dataset of lateral root formation. We report that multiple genes coding for very long chain fatty acid (VLCFA) biosynthesis enzymes are induced during lateral root development in a PUCHI-dependent manner. Significantly, several mutants perturbed in VLCFA biosynthesis show similar lateral root developmental defects as puchi-1 Moreover, puchi-1 roots display the same disorganized callus formation phenotype as VLCFA biosynthesis-deficient mutants when grown on auxin-rich callus-inducing medium. Lipidomic profiling of puchi-1 roots revealed reduced VLCFA content compared with WT. We conclude that PUCHI-regulated VLCFA biosynthesis is part of a pathway controlling cell proliferation during lateral root and callus formation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Calo Ósseo/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Calo Ósseo/metabolismo , Proliferação de Células/genética , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal/genética , Raízes de Plantas/genética
8.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955540

RESUMO

Long-chain acyl-CoA synthetases (LACSs) catalyze fatty acids (FAs) to form fatty acyl-CoA thioesters, which play essential roles in FA and lipid metabolisms and cuticle wax biosynthesis. Although LACSs from Arabidopsis have been intensively studied, the characterization and function of LACSs from poplar are unexplored. Here, 10 poplar PtLACS genes were identified from the poplar genome and distributed to eight chromosomes. A phylogenetic tree indicated that PtLACSs are sorted into six clades. Collinearity analysis and duplication events demonstrated that PtLACSs expand through segmental replication events and experience purifying selective pressure during the evolutionary process. Expression patterns revealed that PtLACSs have divergent expression changes in response to abiotic stress. Interaction proteins and GO analysis could enhance the understanding of putative interactions among protein and gene regulatory networks related to FA and lipid metabolisms. Cluster networks and long-chain FA (LCFA) and very long-chain FA (VLCFA) content analysis revealed the possible regulatory mechanism in response to drought and salt stresses in poplar. The present study provides valuable information for the functional identification of PtLACSs in response to abiotic stress metabolism in poplar.


Assuntos
Arabidopsis , Populus , Acil Coenzima A/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Ácidos Graxos/metabolismo , Filogenia , Populus/genética , Populus/metabolismo , Estresse Fisiológico/genética
9.
Am J Med Genet A ; 185(6): 1848-1853, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33683010

RESUMO

We report three unrelated probands, two male and one female, diagnosed with Aicardi-Goutières syndrome (AGS) after screening positive on California newborn screening (CA NBS) for X-linked adrenoleukodystrophy (X-ALD) due to elevated C26:0 lysophosphatidylcholine (C26:0-LPC). Follow-up evaluation was notable for elevated C26:0, C26:1, and C26:0/C22:0 ratio, and normal red blood cell plasmalogens levels in all three probands. Diagnoses were confirmed by molecular sequencing prior to 12 months of age after clinical evaluation was inconsistent with X-ALD or suggestive of AGS. For at least one proband, the early diagnosis of AGS enabled candidacy for enrollment into a therapeutic clinical trial. This report demonstrates the importance of including AGS on the differential diagnosis for individuals who screen positive for X-ALD, particularly infants with abnormal neurological features, as this age of onset would be highly unusual for X-ALD. While AGS is not included on the Recommended Universal Screening Panel, affected individuals can be identified early through state NBS programs so long as providers are aware of a broader differential that includes AGS. This report is timely, as state NBS algorithms for X-ALD are actively being established, implemented, and refined.


Assuntos
Adrenoleucodistrofia/sangue , Doenças Autoimunes do Sistema Nervoso/sangue , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Triagem Neonatal , Malformações do Sistema Nervoso/sangue , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patologia , Doenças Autoimunes do Sistema Nervoso/complicações , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Teste em Amostras de Sangue Seco , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Recém-Nascido , Lisofosfatidilcolinas/sangue , Masculino , Malformações do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Espectrometria de Massas em Tandem
10.
Endocr J ; 67(6): 655-658, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32101828

RESUMO

Adrenoleukodystrophy (ALD) is an X-linked disorder caused by a hemizygous mutation of the ABCD1 gene. Patients with ALD show progressive central nervous system demyelination and primary adrenal insufficiency. In Japan, most reported ALD cases were childhood-onset, and only one case of an adult patient with Addison's disease form of ALD has ever been reported. Herein, we present a case of a 29-year-old man with Addison's disease form of ALD. The patient had anorexia, weight loss, and skin pigmentation from 18 years of age. At first visit, his weight had decreased by 12 kg from 57 kg when he was 15 years old. Endocrinological examination showed low serum cortisol (1.2 µg/dL) with high plasma ACTH (4,750 pg/mL), and abdominal computed tomography showed normal adrenal glands. Very-long-chain fatty acid (VLCFA) levels were elevated, and the ABCD1 mutation, p.Gly116Arg, was identified in hemizygous state. He had no significant neurological findings on physical examination and no white matter lesions on brain magnetic resonance imaging (MRI). He was diagnosed with ALD presenting as Addison's disease, and glucocorticoid replacement therapy was initiated. Four years after the diagnosis, he still did not show any neurological findings and any white matter lesions on brain MRI. Evaluating VLCFA levels for ALD diagnosis is important in young adult men with idiopathic primary adrenal insufficiency as well as in children. Early diagnosis enables more rational approaches including the early detection of neurological complications and might improve the prognosis of patients.


Assuntos
Doença de Addison/diagnóstico , Adrenoleucodistrofia/diagnóstico , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Doença de Addison/complicações , Doença de Addison/tratamento farmacológico , Doença de Addison/genética , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/patologia , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/genética , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Diagnóstico Precoce , Glucocorticoides/administração & dosagem , Terapia de Reposição Hormonal , Humanos , Hidrocortisona/administração & dosagem , Masculino
11.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121154

RESUMO

The free-living Gram-negative bacterium Oligotropha carboxidovorans (formerly: Pseudomonas carboxydovorans), isolated from wastewater, is able to live in aerobic and, facultatively, in autotrophic conditions, utilizing carbon monoxide or hydrogen as a source of energy. The structure of O. carboxidovorans lipid A, a hydrophobic part of lipopolysaccharide, was studied using NMR spectroscopy and high-resolution mass spectrometry (MALDI-ToF MS) techniques. It was demonstrated that the lipid A backbone is composed of two d-GlcpN3N residues connected by a ß-(1→6) glycosidic linkage, substituted by galacturonic acids (d-GalpA) at C-1 and C-4' positions. Both diaminosugars are symmetrically substituted by 3-hydroxy fatty acids (12:0(3-OH) and 18:0(3-OH)). Ester-linked secondary acyl residues (i.e., 18:0, and 26:0(25-OH) and a small amount of 28:0(27-OH)) are located in the distal part of lipid A. These very long-chain hydroxylated fatty acids (VLCFAs) were found to be almost totally esterified at the (ω-1)-OH position with malic acid. Similarities between the lipid A of O. carboxidovorans and Mesorhizobium loti, Rhizobium leguminosarum, Caulobacter crescentus as well as Aquifex pyrophylus were observed and discussed from the perspective of the genomic context of these bacteria.


Assuntos
Bradyrhizobiaceae/metabolismo , Ácidos Hexurônicos/química , Lipídeo A/química , Malatos/química , Substituição de Aminoácidos , Bradyrhizobiaceae/química , Bradyrhizobiaceae/genética , Sequência de Carboidratos , Lipídeo A/genética , Lipídeo A/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455599

RESUMO

Glycosphingolipids containing very-long-chain fatty acids (VLCFAs) regulate several immune responses, such as cytokine production, immune signaling, and antibody induction. We previously reported that stimulation with an inflammatory mediator, TNF-α, promotes the expression of glycosphingolipids in vascular endothelial cells. The major component is globotetraosylceramide containing VLCFAs (Gb4Cer-VLCFAs), but its role in inflammatory responses has not been fully investigated. In this study, the antibody-inducing properties of Gb4Cer-VLCFAs were analyzed using serum and hybridoma cells generated from Gb4Cer-VLCFA-immunized mice. The reactivity of serum antibodies against Gb4Cer indicated that immunization with Gb4Cer-VLCFAs immediately induced the production of anti-Gb4Cer antibodies. Over 81% of hybridomas generated from the splenocytes of an immunized mouse produced anti-Gb4Cer antibodies, a subset of which recognized an epitope shared by Gb4Cer and its precursor globotriaosylceramide (Gb3Cer). Further biochemical analyses of established monoclonal antibodies revealed that these antibodies included IgM and IgG3, which specifically react with Gb4Cer and Gb3Cer. These results indicate that immunization with Gb4Cer-VLCFAs can efficiently induce the production of anti-Gb4Cer and -Gb3Cer antibodies by B cells.


Assuntos
Anticorpos Monoclonais/imunologia , Globosídeos/imunologia , Animais , Células Cultivadas , Humanos , Hibridomas/imunologia , Imunização/métodos , Camundongos , Baço/imunologia , Fator de Necrose Tumoral alfa/metabolismo
13.
J Cell Physiol ; 234(10): 18344-18348, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932193

RESUMO

This work analyzes the thermogenic flux induced by the very long-chain fatty acid (VLCFA) lignoceric acid (C24:0) in isolated peroxisomes. Specific metabolic alterations of peroxisomes are related to a variety of disorders, the most frequent one being the neurodegenerative inherited disease X-linked adrenoleukodystrophy (X-ALD). A peroxisomal transport protein is mutated in this disorder. Due to reduced catabolism and enhanced fatty acid (FA) elongation, VLCFA accumulates in plasma and in all tissues, contributing to the clinical manifestations of this disorder. During peroxisomal metabolism, heat is produced but it is considered lost. Instead, it is a form of energy that could play a role in molecular mechanisms of this pathology and other neurodegenerative disorders. The thermogenic flux induced by lignoceric acid (C24:0) was estimated by isothermal titration calorimetry in peroxisomes isolated from HepG2 cells and from fibroblasts obtained from patients with X-ALD and healthy subjects. Heat flux induced by lignoceric acid in HepG2 peroxisomes was exothermic, indicating normal peroxisomal metabolism. In X-ALD peroxisomes the heat flux was endothermic, indicating the requirement of heat/energy, possibly for cellular metabolism. In fibroblasts from healthy subjects, the effect was less pronounced than in HepG2, a kind of cell known to have greater FA metabolism than fibroblasts. Our hypothesis is that heat is not lost but it could act as an activator, for example on the heat-sensitive pathway related to TRVP2 receptors. To investigate this hypothesis we focused on peroxisomal metabolism, considering that impaired heat generation could contribute to the development of peroxisomal neurodegenerative disorders.


Assuntos
Adrenoleucodistrofia/tratamento farmacológico , Ácidos Graxos/farmacologia , Fibroblastos/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
15.
Clin Genet ; 95(2): 310-319, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30561787

RESUMO

Defects in the peroxisomes biogenesis and/or function result in peroxisomal disorders. In this study, we describe the largest Arab cohort to date (72 families) of clinically, biochemically and molecularly characterized patients with peroxisomal disorders. At the molecular level, we identified 43 disease-causing variants, half of which are novel. The founder nature of many of the variants allowed us to calculate the minimum disease burden for these disorders in our population ~1:30 000, which is much higher than previous estimates in other populations. Clinically, we found an interesting trend toward genotype/phenotype correlation in terms of long-term survival. Nearly half (40/75) of our peroxisomal disorders patients had documented survival beyond 1 year of age. Most unusual among the long-term survivors was a multiplex family in which the affected members presented as adults with non-specific intellectual disability and epilepsy. Other unusual presentations included the very recently described peroxisomal fatty acyl-CoA reductase 1 disorder as well as CRD, spastic paraparesis, white matter (CRSPW) syndrome. We conclude that peroxisomal disorders are highly heterogeneous in their clinical presentation. Our data also confirm the demonstration that milder forms of Zellweger spectrum disorders cannot be ruled out by the "gold standard" very long chain fatty acids assay, which highlights the value of a genomics-first approach in these cases.


Assuntos
Árabes , Transtornos Peroxissômicos/epidemiologia , Transtornos Peroxissômicos/etiologia , Árabes/genética , Biomarcadores , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Consanguinidade , Efeitos Psicossociais da Doença , Gerenciamento Clínico , Suscetibilidade a Doenças , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/terapia , Fenótipo , Vigilância da População , Prognóstico
16.
J Med Genet ; 55(6): 408-414, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29496980

RESUMO

BACKGROUND: Ichthyosis and neurological involvement occur in relatively few known Mendelian disorders caused by mutations in genes relevant both for epidermis and neural function. OBJECTIVES: To identify the cause of a similar phenotype of ichthyotic keratoderma, spasticity, mild hypomyelination (on MRI) and dysmorphic features (IKSHD) observed in two unrelated paediatric probands without family history of disease. METHODS: Whole exome sequencing was performed in both patients. The functional effect of prioritised variant in ELOVL1 (very-long-chain fatty acids (VLCFAs) elongase) was analysed by VLCFA profiling by gas chromatography-mass spectrometry in stably transfected HEK2932 cells and in cultured patient's fibroblasts. RESULTS: Probands shared novel heterozygous ELOVL1 p.Ser165Phe mutation (de novo in one family, while in the other family, father could not be tested). In transfected cells p.Ser165Phe: (1) reduced levels of FAs C24:0-C28:0 and C26:1 with the most pronounced effect for C26:0 (P=7.8×10-6 vs HEK293 cells with wild type (wt) construct, no difference vs naïve HEK293) and (2) increased levels of C20:0 and C22:0 (P=6.3×10-7, P=1.2×10-5, for C20:0 and C22:0, respectively, comparison vs HEK293 cells with wt construct; P=2.2×10-7, P=1.9×10-4, respectively, comparison vs naïve HEK293). In skin fibroblasts, there was decrease of C26:1 (P=0.014), C28:0 (P=0.001) and increase of C20:0 (P=0.033) in the patient versus controls. There was a strong correlation (r=0.92, P=0.008) between the FAs profile of patient's fibroblasts and that of p.Ser165Phe transfected HEK293 cells. Serum levels of C20:0-C26:0 FAs were normal, but the C24:0/C22:0 ratio was decreased. CONCLUSION: The ELOVL1 p.Ser165Phe mutation is a likely cause of IKSHD.


Assuntos
Acetiltransferases/genética , Transtornos Dismórficos Corporais/genética , Ictiose/genética , Doenças do Sistema Nervoso/genética , Adolescente , Transtornos Dismórficos Corporais/complicações , Transtornos Dismórficos Corporais/diagnóstico por imagem , Transtornos Dismórficos Corporais/fisiopatologia , Criança , Pré-Escolar , Elongases de Ácidos Graxos , Células HEK293 , Humanos , Ictiose/complicações , Ictiose/diagnóstico por imagem , Ictiose/fisiopatologia , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/fisiopatologia , Sequenciamento do Exoma
17.
Proc Natl Acad Sci U S A ; 113(18): 5101-6, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27092001

RESUMO

The already differentiated organs in plants have a remarkable capacity to regenerate new individuals under culture conditions. Plant in vitro regeneration practically starts with the induction of a pluripotent cell mass, the callus, from detached organs on auxin-rich callus-inducing medium (CIM), which is generally required for subsequent regeneration of new bodies. Recent studies show that CIM-induced callus formation occurs from the pericycle or pericycle-like cells through a root developmental pathway, whereas the signals involved in governing callus-forming capacity of pericycle cells remain unknown. Here we report that very-long-chain fatty acids (VLCFAs) play a critical role in confining the pericycle competence for callus formation and thus the regeneration capacity of Arabidopsis By genetic screening, we identified the callus formation-related 1 (cfr1) mutant, which bypasses the inhibition of callus-forming capacity in roots by solitary-root (slr/iaa14). We show that CFR1 encodes 3-ketoacyl-CoA synthase 1 (KCS1), which catalyzes a rate-limiting step of VLCFA biosynthesis. Our biochemical and genetic analyses demonstrate that VLCFAs restrict the pericycle competence for callus formation, at least in part, by regulating the transcription of Aberrant Lateral Root Formation 4 (ALF4). Moreover, we provide evidence that VLCFAs act as cell layer signals to mediate the pericycle competence for callus formation. Taken together, our results identify VLCFAs or their derivatives as the confining signals for mediating the pericycle competence for callus formation and thus the regeneration capacity of plant organs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
18.
Cell Biochem Funct ; 36(7): 366-376, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30264402

RESUMO

Even though increasing evidence indicates the importance of peroxisomal lipid metabolism in regulating biological and pathological events, its involvement in cartilage development has not been well studied. Here, we identified the importance of peroxisomal function, particularly the functional integrity of ABCD2, in the pathogenesis of osteoarthritis (OA). Knockdown of ABCD2 in OA chondrocytes induced the accumulation of very long chain fatty acids (VLCFAs) and apoptotic cell death. Moreover, knockdown of ABCD2 altered profiles of miRNAs that affect the expression level of ACSL4, a known direct regulator of lipid metabolism. Suppression of ACSL4 in human chondrocytes-induced VLCFA accumulation, MMP-13 expression, and apoptotic cell death. In vivo morph-down of the ACSL4 homologue in zebrafish resulted in significant defects in cartilage development and in vivo knockdown of ACSL4 in cartilage tissue of an OA model mice promoted severe cartilage degradation. In summary, to the best of our knowledge, this is the first report suggesting that the regulatory network among peroxisomal ABCD2:ACSL4:VLCFA serves as a novel regulator of cartilage homeostasis, and these data may provide novel insights into the role of peroxisomal fatty acid metabolism in pathogenesis of human OA. SIGNIFICANCE OF THE STUDY: Our study indicates that peroxisomal dysfunction is closely related to OA pathogenesis. Particularly, the functional integrity of ABCD2 may play an important role in OA pathogenesis via the accumulation of VLCFAs and stimulation of apoptotic death through altering profiles of miRNAs that target ACSL4. Our findings suggest that targeting the regulatory network among the peroxisomal ABCD2:ACSL4:VLCFA axis may provide a new potential therapeutic strategy for OA pathogenesis.


Assuntos
Subfamília D de Transportador de Cassetes de Ligação de ATP/metabolismo , Coenzima A Ligases/metabolismo , Metabolismo dos Lipídeos , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Subfamília D de Transportador de Cassetes de Ligação de ATP/genética , Adulto , Animais , Apoptose , Condrócitos/metabolismo , Condrócitos/patologia , Coenzima A Ligases/genética , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , MicroRNAs/genética , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/patologia , Peroxissomos/metabolismo , Peixe-Zebra
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 196-209, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27836696

RESUMO

This review focuses on the chemistry and structures of (Brady)rhizobium lipids A, indispensable parts of lipopolysaccharides. These lipids contain unusual (ω-1) hydroxylated very long chain fatty acids, which are synthesized by a very limited group of bacteria, besides rhizobia. The significance and requirement of the very long chain fatty acids for outer membrane stability as well as the genetics of the synthesis pathway are discussed. The biological role of these fatty acids for bacterial life in extremely different environments (soil and intracellular space within nodules) is also considered.


Assuntos
Bactérias/metabolismo , Lipídeos/fisiologia , Lipopolissacarídeos/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Ácidos Graxos/metabolismo , Rhizobium/metabolismo
20.
Biochim Biophys Acta ; 1852(5): 925-36, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25583114

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a severe neurodegenerative disorder resulting from defective ABCD1 transport protein. ABCD1 mediates peroxisomal uptake of free very-long-chain fatty acids (VLCFA) as well as their CoA-esters. Consequently, VLCFA accumulate in patients' plasma and tissues, which is considered as pathogenic X-ALD triggering factor. Clinical symptoms are mostly manifested in neural tissues and adrenal gland. Here, we investigate astrocytes from wild-type control and a genetic X-ALD mouse model (Abcd1-knockout), exposed to supraphysiological VLCFA (C22:0, C24:0 and C26:0) concentrations. They exhibit multiple impairments of energy metabolism. Furthermore, brain mitochondria from Abcd1(-/-) mice and wild-type control respond similarly to VLCFA with increased ROS generation, impaired oxidative ATP synthesis and diminished Ca(2+) uptake capacity, suggesting that a defective ABCD1 exerts no adaptive pressure on mitochondria. In contrast, astrocytes from Abcd1(-/-) mice respond more sensitively to VLCFA than wild-type control astrocytes. Moreover, long-term application of VLCFA induces high ROS generation, and strong in situ depolarization of mitochondria, and, in Abcd1(-/-) astrocytes, severely diminishes the capability to revert oxidized pyridine nucleotides to NAD(P)H. In addition, observed differences in responses of mitochondria and astrocytes to the hydrocarbon chain length of VLCFA suggest that detrimental VLCFA activities in astrocytes involve defective cellular functions other than mitochondria. In summary, we clearly demonstrate that VLCFA increase the vulnerability of Abcd1(-/-) astrocytes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/deficiência , Adrenoleucodistrofia/metabolismo , Astrócitos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/farmacologia , Mitocôndrias/efeitos dos fármacos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Cálcio/farmacocinética , Células Cultivadas , Ácidos Graxos/química , Transporte de Íons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Mitocôndrias/metabolismo , NADP/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA