Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
J Lipid Res ; 65(1): 100475, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972731

RESUMO

Increased circulating levels of apolipoprotein C3 (APOC3) predict cardiovascular disease (CVD) risk in humans, and APOC3 promotes atherosclerosis in mouse models. APOC3's mechanism of action is due in large part to its ability to slow the clearance of triglyceride-rich lipoproteins (TRLs) and their remnants when APOC3 is carried by these lipoproteins. However, different pools and forms of APOC3 exert distinct biological effects or associations with atherogenic processes. Thus, lipid-free APOC3 induces inflammasome activation in monocytes whereas lipid particle-bound APOC3 does not. APOC3-enriched LDL binds better to the vascular glycosaminoglycan biglycan than does LDL depleted of APOC3. Patterns of APOC3 glycoforms predict CVD risk differently. The function of APOC3 bound to HDL is largely unknown. There is still much to learn about the mechanisms of action of different forms and pools of APOC3 in atherosclerosis and CVD, and whether APOC3 inhibition would prevent CVD risk in patients on LDL-cholesterol lowering medications.


Assuntos
Aterosclerose , Lipoproteínas , Camundongos , Animais , Humanos , Apolipoproteína C-III , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Aterosclerose/metabolismo
2.
J Lipid Res ; 65(2): 100500, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219820

RESUMO

Angiopoietin-like protein 3 (ANGPTL3) is a hepatically secreted protein and therapeutic target for reducing plasma triglyceride-rich lipoproteins and low-density lipoprotein (LDL) cholesterol. Although ANGPTL3 modulates the metabolism of circulating lipoproteins, its role in triglyceride-rich lipoprotein assembly and secretion remains unknown. CRISPR-associated protein 9 (CRISPR/Cas9) was used to target ANGPTL3 in HepG2 cells (ANGPTL3-/-) whereupon we observed ∼50% reduction of apolipoprotein B100 (ApoB100) secretion, accompanied by an increase in ApoB100 early presecretory degradation via a predominantly lysosomal mechanism. Despite defective particle secretion in ANGPTL3-/- cells, targeted lipidomic analysis did not reveal neutral lipid accumulation in ANGPTL3-/- cells; rather ANGPTL3-/- cells demonstrated decreased secretion of newly synthesized triglycerides and increased fatty acid oxidation. Furthermore, RNA sequencing demonstrated significantly altered expression of key lipid metabolism genes, including targets of peroxisome proliferator-activated receptor α, consistent with decreased lipid anabolism and increased lipid catabolism. In contrast, CRISPR/Cas9 LDL receptor (LDLR) deletion in ANGPTL3-/- cells did not result in a secretion defect at baseline, but proteasomal inhibition strongly induced compensatory late presecretory degradation of ApoB100 and impaired its secretion. Additionally, these ANGPTL3-/-;LDLR-/- cells rescued the deficient LDL clearance of LDLR-/- cells. In summary, ANGPTL3 deficiency in the presence of functional LDLR leads to the production of fewer lipoprotein particles due to early presecretory defects in particle assembly that are associated with adaptive changes in intrahepatic lipid metabolism. In contrast, when LDLR is absent, ANGPTL3 deficiency is associated with late presecretory regulation of ApoB100 degradation without impaired secretion. Our findings therefore suggest an unanticipated intrahepatic role for ANGPTL3, whose function varies with LDLR status.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Metabolismo dos Lipídeos , Proteínas Semelhantes a Angiopoietina/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Metabolismo dos Lipídeos/genética , Lipoproteínas/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo
3.
J Lipid Res ; 65(3): 100503, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38246235

RESUMO

Circulating levels of the soluble ligand-binding ectodomain of the LDL receptor (sLDLR) that is proteolytically cleaved from the cell surface have been shown to correlate with plasma triglycerides, but the lipid and lipoprotein effects of longitudinal changes in sLDLR have not been examined. We sought to assess associations between changes in sLDLR and detailed lipoprotein measurements between baseline and 6 months in participants in the DIETFITS (Diet Intervention Examining The Factors Interacting with Treatment Success) weight loss trial who were randomly assigned to the low-fat (n = 225) or low-carbohydrate (n = 236) diet arms. sLDLR was assayed using a proteomic procedure, lipids and apoprotein (apo) B and apoAI were measured by standard assays, and lipoprotein particle subfractions were quantified by ion mobility methodology. Changes in sLDLR were significantly positively associated with changes in plasma cholesterol, triglycerides, apoB, large-sized and medium-sized VLDL, and small and very small LDL, and inversely with changes in large LDL and HDL. The lipoprotein subfraction associations with sLDLR were independent of age, sex, diet, and BMI, but all except for large LDL were reduced to insignificance when adjusted for triglyceride change. Principal component analysis identified three independent clusters of changes in lipoprotein subfractions that accounted for 78% of their total variance. Change in sLDLR was most strongly correlated with change in the principal component that was loaded positively with large VLDL and small and very small LDL and negatively with large LDL and HDL. In conclusion, sLDLR is a component of a cluster of lipids and lipoproteins that are characteristic of atherogenic dyslipidemia.


Assuntos
Lipoproteínas , Proteômica , Humanos , Triglicerídeos , Receptores de LDL , Dieta , Redução de Peso , Lipoproteínas LDL , Lipoproteínas VLDL
4.
J Lipid Res ; 65(7): 100580, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901559

RESUMO

This study aimed to determine whether obese men with nonalcoholic fatty liver disease (NAFLD) display differences between those with simple steatosis versus steatohepatitis (NASH) in splanchnic and hepatic FFA and VLDL-triglycerides (VLDL-TG) balances. The study involved 17 obese men with biopsy-proven NAFLD (9 with NASH and 8 with simple steatosis). We used hepatic vein catheterization in combination with [3H]palmitate and [14C]VLDL-TG tracers to measure splanchnic palmitate and VLDL-TG uptake and release rates during basal and hyperinsulinemic conditions. Indocyanine green was used to measure splanchnic plasma flow. Splanchnic palmitate uptake was similar in the two groups and significantly reduced during hyperinsulinemia (NASH: 62 (48-77) versus 38 (18-58) µmol/min; simple steatosis: 62 (46-78) versus 45 (25-65) µmol/min, mean (95% CI), basal versus clamp periods, respectively, P = 0.02 time-effect). Splanchnic palmitate release was also comparable between groups and nonsignificantly diminished during hyperinsulinemia. The percent palmitate delivered to the liver originating from visceral adipose tissue lipolysis was similar and unchanged by hyperinsulinemia. Splanchnic uptake and release of VLDL-TG were similar between groups. Hyperinsulinemia suppressed VLDL-TG release (P <0.05 time-effect) in both groups. Insulin-mediated glucose disposal was similar in the two groups (P = 0.54). Obese men with NASH and simple steatosis have similar splanchnic uptake and release of FFA and VLDL-TG and a similar proportion of FFA from visceral adipose tissue lipolysis delivered to the liver. These results demonstrate that the splanchnic balances of FFA and VLDL-TG do not differ between obese men with NASH and those with simple steatosis.

5.
Biol Chem ; 405(6): 383-393, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38488124

RESUMO

The linkage between low-density lipoprotein receptor-related protein (LRP)1-mediated metabolism of apolipoprotein (apo) E-containing lipoproteins (apoE-LP) and the lipopolysaccharide (LPS)-induced inflammatory response contributes to the pathogenesis of sepsis; however, the underlying mechanisms are unclear. Therefore, in this study, the effects of apoE-LP and their constituents on the mRNA expression of interleukin (IL)-6 and LRP1 were evaluated using a culture system of human fibroblasts supplemented with LPS and apoE-containing emulsion particles (apoE-EP). The affinity of apoE-LP for LPS was examined using the interaction between fluorescence-labeled LPS and serum lipoprotein fractions. LPS-induced inflammation significantly upregulated the mRNA expression of IL-6 and LRP1. This upregulation was markedly suppressed by pre-incubation of LPS with apoE-EP or its constituents (apoE or EP). The suppressive effect of apoE-EP on IL-6 upregulation was attenuated in the presence of lactoferrin, an inhibitor of LRP1. The prepared apoE-EP and serum triglyceride-rich lipoproteins showed significant affinity for LPS. However, these affinities appeared to be lower than expected based on the extent to which IL-6 upregulation was suppressed by pre-incubation of LPS with apoE-EP. Overall, these results indicate that LPS-induced inflammation may be regulated by 1) the LPS-neutralizing effect of apoE-LP, 2) anti-inflammatory effect of apoE, and 3) LRP1-mediated metabolic pathways.


Assuntos
Apolipoproteínas E , Inflamação , Lipopolissacarídeos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Lipopolissacarídeos/farmacologia , Humanos , Inflamação/metabolismo , Inflamação/induzido quimicamente , Apolipoproteínas E/metabolismo , Interleucina-6/metabolismo , Células Cultivadas , Lipoproteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
6.
J Lipid Res ; 64(8): 100418, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37481036

RESUMO

Hypertriglyceridemic hyperapoB is an adverse lipoprotein phenotype characterized by low high density lipoprotein (HDL) cholesterol, high triglycerides, high apolipoprotein B (ApoB), and low low density lipoprotein (LDL) cholesterol to ApoB ratio. We investigated whether and to what extent hypertriglyceridemic hyperapoB associates with the incidence and resolution of nonalcoholic fatty liver disease (NAFLD). This prospective cohort study included 9,019 Chinese participants 40 years or older, from 2010 to 2015. Logistic regression models were used to examine the odds ratios (ORs) for the incidence and resolution of NAFLD associated with the hypertriglyceridemic hyperapoB lipoprotein phenotype and individual lipid and lipoprotein parameters. During a median 4.3 years of follow-up, compared with participants with optimal phenotype, the fully adjusted ORs (95% CIs) for participants with hypertriglyceridemic hyperapoB were 2.75 (1.91, 3.95) and 0.57 (0.33, 1.00) for incidence and resolution of NAFLD, respectively. These associations were consistent across subgroup participants with varied demographic, lifestyle, and metabolic status. Individually, each unit increase in HDL cholesterol (OR: 0.98; 95% CI: 0.97, 0.99), natural logarithm-transformed triglycerides (1.89; 1.52, 2.36), and ApoB (1.006; 1.002, 1.011) was independently associated with NAFLD incidence, and only triglycerides (0.77; 0.60, 0.99) was independently associated with NAFLD resolution. Our findings suggest that Chinese adults with hypertriglyceridemic hyperapoB have a higher risk of NAFLD incidence and a lower likelihood of NAFLD resolution. These associations were stable among adults with different demographic, lifestyle, and metabolic status, supporting hypertriglyceridemic hyperapoB as a valuable clinical marker for the prevention and control of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Estudos de Coortes , Estudos Prospectivos , Lipoproteínas LDL , Triglicerídeos , Colesterol , Apolipoproteínas B/genética , Lipoproteínas , HDL-Colesterol
7.
J Lipid Res ; 64(12): 100471, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944753

RESUMO

Despite great progress in understanding lipoprotein physiology, there is still much to be learned about the genetic drivers of lipoprotein abundance, composition, and function. We used ion mobility spectrometry to survey 16 plasma lipoprotein subfractions in 500 Diversity Outbred mice maintained on a Western-style diet. We identified 21 quantitative trait loci (QTL) affecting lipoprotein abundance. To refine the QTL and link them to disease risk in humans, we asked if the human homologs of genes located at each QTL were associated with lipid traits in human genome-wide association studies. Integration of mouse QTL with human genome-wide association studies yielded candidate gene drivers for 18 of the 21 QTL. This approach enabled us to nominate the gene encoding the neutral ceramidase, Asah2, as a novel candidate driver at a QTL on chromosome 19 for large HDL particles (HDL-2b). To experimentally validate Asah2, we surveyed lipoproteins in Asah2-/- mice. Compared to wild-type mice, female Asah2-/- mice showed an increase in several lipoproteins, including HDL. Our results provide insights into the genetic regulation of circulating lipoproteins, as well as mechanisms by which lipoprotein subfractions may affect cardiovascular disease risk in humans.


Assuntos
Camundongos de Cruzamento Colaborativo , Estudo de Associação Genômica Ampla , Feminino , Humanos , Camundongos , Animais , Lipoproteínas/genética , Locos de Características Quantitativas/genética , Fenótipo , Lipoproteínas VLDL
8.
J Lipid Res ; 64(5): 100353, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907552

RESUMO

Oxylipins are produced enzymatically from polyunsaturated fatty acids, are abundant in triglyceride-rich lipoproteins (TGRLs), and mediate inflammatory processes. Inflammation elevates TGRL concentrations, but it is unknown if the fatty acid and oxylipin compositions change. In this study, we investigated the effect of prescription ω-3 acid ethyl esters (P-OM3; 3.4 g/d EPA + DHA) on the lipid response to an endotoxin challenge (lipopolysaccharide; 0.6 ng/kg body weight). Healthy young men (N = 17) were assigned 8-12 weeks of P-OM3 and olive oil control in a randomized order crossover study. Following each treatment period, subjects received endotoxin challenge, and the time-dependent TGRL composition was observed. Postchallenge, arachidonic acid was 16% [95% CI: 4%, 28%] lower than baseline at 8 h with control. P-OM3 increased TGRL ω-3 fatty acids (EPA 24% [15%, 34%]; DHA 14% [5%, 24%]). The timing of ω-6 oxylipin responses differed by class; arachidonic acid-derived alcohols peaked at 2 h, while linoleic acid-derived alcohols peaked at 4 h (pint = 0.006). P-OM3 increased EPA alcohols by 161% [68%, 305%] and DHA epoxides by 178% [47%, 427%] at 4 h compared to control. In conclusion, this study shows that TGRL fatty acid and oxylipin composition changes following endotoxin challenge. P-OM3 alters the TGRL response to endotoxin challenge by increasing availability of ω-3 oxylipins for resolution of the inflammatory response.


Assuntos
Ácidos Graxos Ômega-3 , Oxilipinas , Masculino , Humanos , Ésteres/farmacologia , Endotoxinas , Estudos Cross-Over , Ácidos Graxos Ômega-3/farmacologia , Ácido Eicosapentaenoico/farmacologia , Lipoproteínas , Triglicerídeos , Ácidos Graxos , Ácido Araquidônico , Álcoois , Ácidos Docosa-Hexaenoicos/farmacologia
9.
Diabetologia ; 66(12): 2307-2319, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37775612

RESUMO

AIMS/HYPOTHESIS: This study explored the hypothesis that significant abnormalities in the metabolism of intestinally derived lipoproteins are present in individuals with type 2 diabetes on statin therapy. These abnormalities may contribute to residual CVD risk. METHODS: To investigate the kinetics of ApoB-48- and ApoB-100-containing lipoproteins, we performed a secondary analysis of 11 overweight/obese individuals with type 2 diabetes who were treated with lifestyle counselling and on a stable dose of metformin who were from an earlier clinical study, and compared these with 11 control participants frequency-matched for age, BMI and sex. Participants in both groups were on a similar statin regimen during the study. Stable isotope tracers were used to determine the kinetics of the following in response to a standard fat-rich meal: (1) apolipoprotein (Apo)B-48 in chylomicrons and VLDL; (2) ApoB-100 in VLDL, intermediate-density lipoprotein (IDL) and LDL; and (3) triglyceride (TG) in VLDL. RESULTS: The fasting lipid profile did not differ significantly between the two groups. Compared with control participants, in individuals with type 2 diabetes, chylomicron TG and ApoB-48 levels exhibited an approximately twofold higher response to the fat-rich meal, and a twofold higher increment was observed in ApoB-48 particles in the VLDL1 and VLDL2 density ranges (all p < 0.05). Again comparing control participants with individuals with type 2 diabetes, in the latter, total ApoB-48 production was 25% higher (556 ± 57 vs 446 ± 57 mg/day; p < 0.001), conversion (fractional transfer rate) of chylomicrons to VLDL was around 40% lower (35 ± 25 vs 82 ± 58 pools/day; p=0.034) and direct clearance of chylomicrons was 5.6-fold higher (5.6 ± 2.2 vs 1.0 ± 1.8 pools/day; p < 0.001). During the postprandial period, ApoB-48 particles accounted for a higher proportion of total VLDL in individuals with type 2 diabetes (44%) compared with control participants (25%), and these ApoB-48 VLDL particles exhibited a fivefold longer residence time in the circulation (p < 0.01). No between-group differences were seen in the kinetics of ApoB-100 and TG in VLDL, or in LDL ApoB-100 production, pool size and clearance rate. As compared with control participants, the IDL ApoB-100 pool in individuals with type 2 diabetes was higher due to increased conversion from VLDL2. CONCLUSIONS/INTERPRETATION: Abnormalities in the metabolism of intestinally derived ApoB-48-containing lipoproteins in individuals with type 2 diabetes on statins may help to explain the residual risk of CVD and may be suitable targets for interventions. TRIAL REGISTRATION: ClinicalTrials.gov NCT02948777.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Apolipoproteína B-100/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Apolipoproteína B-48 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/complicações , Lipoproteínas VLDL/metabolismo , Apolipoproteínas B/metabolismo , Apolipoproteínas B/uso terapêutico , Lipoproteínas , Triglicerídeos , Lipoproteínas IDL , Quilomícrons
10.
J Clin Immunol ; 43(6): 1229-1240, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36995502

RESUMO

PURPOSE: Triglycerides (TG) and their major transport lipoprotein in the circulation (VLDL) appear to be related to inflammation. Patients with common variable immunodeficiency (CVID) have inflammatory complications associated with gut microbial dysbiosis. We hypothesized that CVID patients have disturbed TG/VLDL profiles associated with these clinical characteristics. METHODS: We measured plasma concentrations of TGs, inflammatory markers, and lipopolysaccharide (LPS) in 95 CVID patients and 28 healthy controls. Additionally, in 40 CVID patients, we explored plasma lipoprotein profiling, fatty acid, gut microbial dysbiosis, and diet. RESULTS: TG levels were increased in CVID patients as compared to healthy controls (1.36 ± 0.53 mmol/l versus 1.08 ± 0.56 [mean, SD], respectively, P = 0.008), particularly in the clinical subgroup "Complications," characterized by autoimmunity and organ-specific inflammation, compared to "Infection only" (1.41 mmol/l, 0.71[median, IQR] versus [1.02 mmol/l, 0.50], P = 0.021). Lipoprotein profile analyses showed increased levels of all sizes of VLDL particles in CVID patients compared to controls. TG levels correlated positively with CRP (rho = 0.256, P = 0.015), IL-6 (rho = 0.237, P = 0.021), IL-12 (rho = 0.265, P = 0.009), LPS (r = 0.654, P = 6.59 × 10-13), CVID-specific gut dysbiosis index (r = 0.315, P = 0.048), and inversely with a favorable fatty acid profile (docosahexaenoic acid [rho = - 0.369, P = 0.021] and linoleic acid [rho = - 0.375, P = 0.019]). TGs and VLDL lipids did not appear to be associated with diet and there were no differences in body mass index (BMI) between CVID patients and controls. CONCLUSION: We found increased plasma levels of TGs and all sizes of VLDL particles, which were associated with systemic inflammation, LPS, and gut dysbiosis in CVID, but not diet or BMI.


Assuntos
Imunodeficiência de Variável Comum , Lipopolissacarídeos , Humanos , Disbiose , Lipoproteínas , Triglicerídeos , Inflamação , Ácidos Graxos
11.
Cytokine ; 161: 156077, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356495

RESUMO

BACKGROUND: Studies have shown that lipoproteins, such as LDL and VLDL, as well as its major protein component ApoE2 impact on macrophage polarization important in atherosclerosis. Proprotein convertase subtilisin/kexin 9 (PCSK9) is a key regulator of lipoprotein receptor expression. The present study investigated the effect of the VLDL/VLDL-receptor (VLDL-R) axis on mononuclear cell polarization, as well as the role of PCSK9 and PCSK9 inhibitors (PCSK9i) within this network. METHODS: Human monocytic THP-1 cells and human monocyte-derived macrophages isolated from peripheral blood mononuclear cells (PBMC) were treated with either LPS/IFN-γ to induce a pro-inflammatory phenotype, or with IL-4/IL-13 to induce an anti-inflammatory phenotype. Cells were then subjected to further treatments by lipoproteins, PCSK9, PCSK9i and lipoprotein receptor blockers. RESULTS: LPS/IFN-γ treatment promoted a pro-inflammatory state with an increased expression of pro-inflammatory mediators such as TNF-α, CD80 and IL-1ß. VLDL co-treatment induced a switch of this pro-inflammatory phenotype to an anti-inflammatory phenotype. In pro-inflammatory cells, VLDL significantly decreased the expression of pro-inflammatory markers e.g., TNF-α, CD80, and IL-1ß. These effects were eliminated by PCSK9 and restored by co-incubation with a specific anti-PCSK9 monoclonal antibody (PCSK9i). Migration assays demonstrated that pro-inflammatory cells displayed a significantly higher invasive capacity when compared to untreated cells or anti-inflammatory cells. Moreover, pro-inflammatory cell chemotaxis was significantly decreased by VLDL-mediated acquisition of the anti-inflammatory phenotype. PCSK9 significantly lessened this VLDL-mediated migration inhibition, which was reversed by the PCSK9i. CONCLUSION: VLDL promotes mononuclear cell differentiation towards an anti-inflammatory phenotype. PCSK9, via its capacity to inhibit VLDL-R expression, reverses the VLDL-mediated anti-inflammatory action, thereby promoting a pro-inflammatory phenotype. Thus, PCSK9 targeting therapies may exert anti-inflammatory properties within the vessel wall.


Assuntos
Leucócitos Mononucleares , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Lipoproteínas , Anti-Inflamatórios
12.
Pharmacol Res ; 187: 106634, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574856

RESUMO

Activation of brown adipose tissue (BAT) with the ß3-adrenergic receptor agonist CL316,243 protects mice from atherosclerosis development, and the presence of metabolically active BAT is associated with cardiometabolic health in humans. In contrast, exposure to cold or treatment with the clinically used ß3-adrenergic receptor agonist mirabegron to activate BAT exacerbates atherosclerosis in apolipoprotein E (ApoE)- and low-density lipoprotein receptor (LDLR)-deficient mice, both lacking a functional ApoE-LDLR pathway crucial for lipoprotein remnant clearance. We, therefore, investigated the effects of mirabegron treatment on dyslipidemia and atherosclerosis development in APOE*3-Leiden.CETP mice, a humanized lipoprotein metabolism model with a functional ApoE-LDLR clearance pathway. Mirabegron activated BAT and induced white adipose tissue (WAT) browning, accompanied by selectively increased fat oxidation and attenuated fat mass gain. Mirabegron increased the uptake of fatty acids derived from triglyceride (TG)-rich lipoproteins by BAT and WAT, which was coupled to increased hepatic uptake of the generated cholesterol-enriched core remnants. Mirabegron also promoted hepatic very low-density lipoprotein (VLDL) production, likely due to an increased flux of fatty acids from WAT to the liver, and resulted in transient elevation in plasma TG levels followed by a substantial decrease in plasma TGs. These effects led to a trend toward lower plasma cholesterol levels and reduced atherosclerosis. We conclude that BAT activation by mirabegron leads to substantial metabolic benefits in APOE*3-Leiden.CETP mice, and mirabegron treatment is certainly not atherogenic. These data underscore the importance of the choice of experimental models when investigating the effect of BAT activation on lipoprotein metabolism and atherosclerosis.


Assuntos
Tecido Adiposo Marrom , Aterosclerose , Animais , Humanos , Camundongos , Agonistas Adrenérgicos/metabolismo , Agonistas Adrenérgicos/farmacologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Triglicerídeos , Receptores de LDL/metabolismo
13.
Europace ; 26(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38195705

RESUMO

AIMS: Metabolic syndrome (MetS) is associated with arrhythmias and cardiovascular mortality. Arrhythmogenesis in MetS results from atrial structural and electrical remodelling. The small-conductance Ca2+-activated K+ (SK) currents modulate atrial repolarization and may influence atrial arrhythmogenicity. This study investigated the regulation of SK current perturbed by a high-fat diet (HFD) to mimic MetS. METHODS AND RESULTS: Thirty mice were divided into two groups that were fed with normal chow (CTL) and HFD for 4 months. Electrocardiography and echocardiography were used to detect cardiac electrical and structure remodelling. Atrial action potential duration (APD) and calcium transient duration (CaTD) were measured by optical mapping of Langendorff-perfused mice hearts. Atrial fibrillation (AF) inducibility and duration were assessed by burst pacing. Whole-cell patch clamp was performed in primarily isolated atrial myocytes for SK current density. The SK current density is higher in atrial myocytes from HFD than in CTL mice (P ≤ 0.037). The RNA and protein expression of SK channels are increased in HFD mice (P ≤ 0.041 and P ≤ 0.011, respectively). Action potential duration is shortened in HFD compared with CTL (P ≤ 0.015). The shortening of the atrial APD in HFD is reversed by the application of 100 nM apamin (P ≤ 0.043). Compared with CTL, CaTD is greater in HFD atria (P ≤ 0.029). Calcium transient decay (Tau) is significantly higher in HFD than in CTL (P = 0.001). Both APD and CaTD alternans thresholds were higher in HFD (P ≤ 0.043), along with higher inducibility and longer duration of AF in HFD (P ≤ 0.023). CONCLUSION: Up-regulation of apamin-sensitive SK currents plays a partial role in the atrial arrhythmogenicity of HFD mice.


Assuntos
Fibrilação Atrial , Cálcio , Camundongos , Animais , Cálcio/metabolismo , Potássio/metabolismo , Apamina/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Potenciais de Ação/fisiologia , Miócitos Cardíacos/metabolismo
14.
Can J Physiol Pharmacol ; 101(11): 554-564, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683292

RESUMO

Avoiding hepatic steatosis is crucial for preventing liver dysfunction, and one mechanism by which this is accomplished is through synchronization of the rate of very low density lipoprotein (VLDL) synthesis with its secretion. Endoplasmic reticulum (ER)-to-Golgi transport of nascent VLDL is the rate-limiting step in its secretion and is mediated by the VLDL transport vesicle (VTV). Recent in vivo studies have indicated that α-tocopherol (α-T) supplementation can reverse steatosis in nonalcoholic fatty liver disease, but its effects on hepatic lipoprotein metabolism are poorly understood. Here, we investigated the impact of α-T on hepatic VLDL synthesis, secretion, and intracellular ER-to-Golgi VLDL trafficking using an in vitro model. Pulse-chase assays using [3H]-oleic acid and 100 µmol/L α-T demonstrated a disruption of early VLDL synthesis, resulting in enhanced apolipoprotein B-100 expression, decreased expression in markers for VTV budding, ER-to-Golgi VLDL transport, and reduced VLDL secretion. Additionally, an in vitro VTV budding assay indicated a significant decrease in VTV production and VTV-Golgi fusion. Confocal imaging of lipid droplet (LD) localization revealed a decrease in overall LD retention, diminished presence of ER-associated LDs, and an increase in Golgi-level LD retention. We conclude that α-T disrupts ER-to-Golgi VLDL transport by modulating the expression of specific proteins and thus reduces VLDL secretion.


Assuntos
Fígado Gorduroso , Lipoproteínas VLDL , Humanos , Lipoproteínas VLDL/metabolismo , alfa-Tocoferol/farmacologia , alfa-Tocoferol/metabolismo , Fígado/metabolismo , Vesículas Transportadoras/metabolismo , Fígado Gorduroso/metabolismo , Retículo Endoplasmático/metabolismo , Triglicerídeos/metabolismo
15.
Lipids Health Dis ; 22(1): 100, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434164

RESUMO

BACKGROUND AND AIMS: Prevention measures for cardiovascular diseases (CVD) have shifted their focus from lipoproteins to the immune system. However, low-grade inflammation and dyslipidemia are tightly entangled. The objective of this study was to assess the relations between a broad panel of inflammatory biomarkers and lipoprotein subclass parameters. METHODS: We utilized data from the population-based Study of Health in Pomerania (SHIP-TREND, n = 403). Plasma concentrations of 37 inflammatory markers were measured by a bead-based assay. Furthermore, we employed nuclear magnetic resonance spectroscopy to measure total cholesterol, total triglycerides, total phospholipids as well as the fractional concentrations of cholesterol, triglycerides, phospholipids, ApoA1, ApoA2 and ApoB in all major lipoprotein subclasses. Associations between inflammatory biomarkers and lipoprotein subclasses were analyzed by adjusted linear regression models. RESULTS: APRIL, BAFF, TWEAK, sCD30, Pentraxin-3, sTNFR1, sTNFR2, Osteocalcin, Chitinase 3-like 1, IFN-alpha2, IFN-gamma, IL-11, IL-12p40, IL-29, IL-32, IL-35, TSLP, MMP1 and MMP2 were related with lipoprotein subclass components, forming two distinct clusters. APRIL had inverse relations to HDL-C (total and subclasses) and HDL Apo-A1 and Apo-A2 content. MMP-2 was inversely related to VLDL-C (total and subclasses), IDL-C as well as LDL5/6-C and VLDL-TG, IDL-TG, total triglycerides as well as LDL5/5-TG and HDL4-TG. Additionally, we identified a cluster of cytokines linked to the Th1-immune response, which were associated with an atherogenic lipoprotein profile. CONCLUSION: Our findings expand the existing knowledge of inflammation-lipoprotein interactions, many of which are suggested to be involved in the pathogeneses of chronic non-communicable diseases. The results of our study support the use of immunomodulatory substances for the treatment and possibly prevention of CVD.


Assuntos
Doenças Cardiovasculares , Inflamação , Humanos , Citocinas , Apolipoproteína A-II , Apolipoproteínas B
16.
Semin Cell Dev Biol ; 108: 72-81, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32444289

RESUMO

In cells, lipids are stored in lipid droplets, dynamic organelles that adapt their size, abundance, lipid and protein composition and organelle interactions to metabolic changes. Lipid droplet accumulation in the liver is the hallmark of non-alcoholic fatty liver disease (NAFLD). Due to the prevalence of obesity, the strongest risk factor for steatosis, NAFLD and its associated complications are currently affecting more than 1 billion people worldwide. Here, we review how triglyceride and phospholipid homeostasis are regulated in hepatocytes and how imbalances between lipid storage, degradation and lipoprotein secretion lead to NAFLD. We discuss how organelle interactions are altered in NAFLD and provide insights how NAFLD progression is associated with changes in hepatocellular signaling and organ-crosstalk. Finally, we highlight unsolved questions in hepatic LD and lipoprotein biology and give an outlook on therapeutic options counteracting hepatic lipid accumulation.


Assuntos
Fígado Gorduroso/metabolismo , Homeostase , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Animais , Fígado Gorduroso/terapia , Humanos , Metabolismo dos Lipídeos
17.
J Lipid Res ; 63(11): 100288, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162520

RESUMO

In mothers who are nursing their infants, increased clearance of plasma metabolites into the mammary gland may reduce ectopic lipid in the liver. No study to date has investigated the role of lactation on liver lipid synthesis in humans, and we hypothesized that lactation would modify fatty acid and glucose handling to support liver metabolism in a manner synchronized with the demands of milk production. Lactating (n = 18) and formula-feeding women (n = 10) underwent metabolic testing at 6-week postpartum to determine whether lactation modified intrahepatic triacylglycerols (IHTGs), measured by proton magnetic resonance spectroscopy. Subjects ingested oral deuterated water to measure fractional de novo lipogenesis (DNL) in VLDL-TG during fasting and during an isotope-labeled clamp at an insulin infusion rate of 10 mU/m2/min. Compared with formula-feeding women, we found that lactating women exhibited lower plasma VLDL-TG concentrations, similar IHTG content and similar contribution of DNL to total VLDL-TG production. These findings suggest that lactation lowers plasma VLDL-TG concentrations for reasons that are unrelated to IHTG and DNL. Surprisingly, we determined that the rate of appearance of nonesterified fatty acids was not related to IHTG in either group, and the expected positive association between DNL and IHTG was only significant in formula-feeding women. Further, in lactating women only, the higher the prolactin concentration, the lower the IHTG, while greater DNL strongly associated with elevations in VLDL-TG. In conclusion, we suggest that future studies should investigate the role of lactation and prolactin in liver lipid secretion and metabolism.


Assuntos
Lactação , Lipogênese , Feminino , Humanos , Prolactina/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Período Pós-Parto
18.
J Lipid Res ; 63(1): 100157, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863862

RESUMO

High levels of circulating triglycerides (TGs), or hypertriglyceridemia, are key components of metabolic diseases, such as type 2 diabetes, metabolic syndrome, and CVD. As TGs are carried by lipoproteins in plasma, hypertriglyceridemia can result from overproduction or lack of clearance of TG-rich lipoproteins (TRLs) such as VLDLs. The primary driver of TRL clearance is TG hydrolysis mediated by LPL. LPL is regulated by numerous TRL protein components, including the cofactor apolipoprotein C-II, but it is not clear how their effects combine to impact TRL hydrolysis across individuals. Using a novel assay designed to mimic human plasma conditions in vitro, we tested the ability of VLDL from 15 normolipidemic donors to act as substrates for human LPL. We found a striking 10-fold difference in hydrolysis rates across individuals when the particles were compared on a protein or a TG basis. While VLDL TG contents moderately correlated with hydrolysis rate, we noticed substantial variations in non-apoB proteins within these particles by MS. The ability of LPL to hydrolyze VLDL TGs did not correlate with apolipoprotein C-II content, but it was strongly inversely correlated with apolipoprotein E (APOE) and, to a lesser extent, apolipoprotein A-II. Addition of exogenous APOE inhibited LPL lipolysis in a dose-dependent manner. The APOE3 and (particularly) APOE4 isoforms were effective at limiting LPL hydrolysis, whereas APOE2 was not. We conclude that APOE on VLDL modulates LPL activity and could be a relevant factor in the pathogenesis of metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2
19.
J Lipid Res ; 63(7): 100232, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598637

RESUMO

Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0-37.8] mg/dl) and slightly reduced in heterozygotes (218 [153-234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.


Assuntos
Deficiência da Lecitina Colesterol Aciltransferase , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase/metabolismo , Apolipoproteínas B , Colesterol/metabolismo , Ésteres do Colesterol , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/genética , Lipoproteínas , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase 2
20.
J Lipid Res ; 63(1): 100144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710432

RESUMO

LPL is a key player in plasma triglyceride metabolism. Consequently, LPL is regulated by several proteins during synthesis, folding, secretion, and transport to its site of action at the luminal side of capillaries, as well as during the catalytic reaction. Some proteins are well known, whereas others have been identified but are still not fully understood. We set out to study the effects of the natural variations in the plasma levels of all known LPL regulators on the activity of purified LPL added to samples of fasted plasma taken from 117 individuals. The enzymatic activity was measured at 25°C using isothermal titration calorimetry. This method allows quantification of the ability of an added fixed amount of exogenous LPL to hydrolyze triglyceride-rich lipoproteins in plasma samples by measuring the heat produced. Our results indicate that, under the conditions used, the normal variation in the endogenous levels of apolipoprotein C1, C2, and C3 or the levels of angiopoietin-like proteins 3, 4, and 8 in the fasted plasma samples had no significant effect on the recorded activity of the added LPL. Instead, the key determinant for the LPL activity was a lipid signature strongly correlated to the average size of the VLDL particles. The signature involved not only several lipoprotein and plasma lipid parameters but also apolipoprotein A5 levels. While the measurements cannot fully represent the action of LPL when attached to the capillary wall, our study provides knowledge on the interindividual variation of LPL lipolysis rates in human plasma.


Assuntos
Lipoproteínas , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA