Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(1): 67-73, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38149785

RESUMO

Two-dimensional transition metal nitrides offer intriguing possibilities for achieving novel electronic and mechanical functionality owing to their distinctive and tunable bonding characteristics compared to other 2D materials. We demonstrate here the enabling effects of strong bonding on the morphology and functionality of 2D tungsten nitrides. The employed bottom-up synthesis experienced a unique substrate stabilization effect beyond van-der-Waals epitaxy that favored W5N6 over lower metal nitrides. Comprehensive structural and electronic characterization reveals that monolayer W5N6 can be synthesized at large scale and shows semimetallic behavior with an intriguing indirect band structure. Moreover, the material exhibits exceptional resilience against mechanical damage and chemical reactions. Leveraging these electronic properties and robustness, we demonstrate the application of W5N6 as atomic-scale dry etch stops that allow the integration of high-performance 2D materials contacts. These findings highlight the potential of 2D transition metal nitrides for realizing advanced electronic devices and functional interfaces.

2.
Nanotechnology ; 34(4)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36270200

RESUMO

Ultralong GaAs nanowires were grown by molecular beam epitaxy using the vapor-liquid-solid method. In this ultralong regime we show the existence of two features concerning the growth kinetic and the structural properties. Firstly, we observed a non-classical growth mode, where the axial growth rate is attenuated. Secondly, we observed structural defects at the surface of Wurtzite segments located at the bottom part of the nanowires. We explain these two phenomena as arising from a particular pathway of the group V species, specific to ultralong nanowires. Finally, the optical properties of such ultralong nanowires are studied by photoluminescence experiments.

3.
Nano Lett ; 18(11): 7217-7221, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30336054

RESUMO

Quantum dots tuned to atomic resonances represent an emerging field of hybrid quantum systems where the advantages of quantum dots and natural atoms can be combined. Embedding quantum dots in nanowires boosts these systems with a set of powerful possibilities, such as precise positioning of the emitters, excellent photon extraction efficiency and direct electrical contacting of quantum dots. Notably, nanowire structures can be grown on silicon substrates, allowing for a straightforward integration with silicon-based photonic devices. In this work we show controlled growth of nanowire-quantum-dot structures on silicon, frequency tuned to atomic transitions. We grow GaAs quantum dots in AlGaAs nanowires with a nearly pure crystal structure and excellent optical properties. We precisely control the dimensions of quantum dots and their position inside nanowires and demonstrate that the emission wavelength can be engineered over the range of at least 30 nm around 765 nm. By applying an external magnetic field, we are able to fine-tune the emission frequency of our nanowire quantum dots to the D2 transition of 87Rb. We use the Rb transitions to precisely measure the actual spectral line width of the photons emitted from a nanowire quantum dot to be 9.4 ± 0.7 µeV, under nonresonant excitation. Our work brings highly desirable functionalities to quantum technologies, enabling, for instance, a realization of a quantum network, based on an arbitrary number of nanowire single-photon sources, all operating at the same frequency of an atomic transition.

4.
Nano Lett ; 18(1): 167-174, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29186660

RESUMO

The possibility to expand the range of material combinations in defect-free heterostructures is one of the main motivations for the great interest in semiconductor nanowires. However, most axial nanowire heterostructures suffer from interface compositional gradients and kink formation, as a consequence of nanoparticle-nanowire interactions during the metal-assisted growth. Understanding such interactions and how they affect the growth mode is fundamental to achieve a full control over the morphology and the properties of nanowire heterostructures for device applications. Here we demonstrate that the sole parameter affecting the growth mode (straight or kinked) of InP segments on InAs nanowire stems by the Au-assisted method is the nanoparticle composition. Indeed, straight InAs-InP nanowire heterostructures are obtained only when the In/Au ratio in the nanoparticles is low, typically smaller than 1.5. For higher In content, the InP segments tend to kink. Tailoring the In/Au ratio by the precursor fluxes at a fixed growth temperature enables us to obtain straight and radius-uniform InAs-InP nanowire heterostructures (single and double) with atomically sharp interfaces. We present a model that is capable of describing all the experimentally observed phenomena: straight growth versus kinking, the stationary nanoparticle compositions in pure InAs and InAs-InP nanowires, the crystal phase trends, and the interfacial abruptness. By taking into account different nanowire/nanoparticle interfacial configurations (forming wetting or nonwetting monolayers in vertical or tapered geometry), our generalized model provides the conditions of nanoparticle stability and abrupt heterointerfaces for a rich variety of growth scenarios. Therefore, our results provide a powerful tool for obtaining high quality InAs-InP nanowire heterostructures with well-controlled properties and can be extended to other material combinations based on the group V interchange.

5.
Nano Lett ; 17(7): 4075-4082, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613888

RESUMO

We report on the first Au-catalyzed growth of CdTe nanowires by metalorganic vapor phase epitaxy. The nanowires were obtained by a separate precursors flow process in which (i) di-isopropyl-telluride (iPr2Te) was first flowed through the reactor to ensure the formation of liquid Au-Te alloy droplets, and (ii) after purging with pure H2 to remove unreacted iPr2Te molecules from the vapor and the growth surface, (iii) dimethylcadmium (Me2Cd) was supplied to the vapor so that Cd atoms could enter the catalyst droplets, leading to nanowire self-assembly. CdTe nanowires were grown between 485 and 515 °C on (111)B-GaAs substrates, the latter preliminary deposited with a 2 µm thick (111)-oriented CdTe buffer layer onto which Au nanoparticles were provided. As-grown CdTe nanowires were vertical ([111]-aligned) straight segments of constant diameter and showed an Au-rich nanodroplet at their tips, the contact angle between the droplets and the nanowires being ∼130°. The nanowire axial growth rate appeared kinetics-limited with an activation energy ∼57 kcal/mol. However, the growth rate turned independent from the nanowire diameter. Present data are interpreted by a theoretical model explaining the nanowire growth through the diffusion transport of Te adatoms under the assumption that their growth occurs during the Me2Cd-flow process step. Low-temperature cathodoluminescence spectra recorded from single nanowires showed a well-resolved band-edge emission typical of zincblend CdTe along with a dominant band peaked at 1.539 eV.

6.
Nano Lett ; 17(9): 5350-5355, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28782958

RESUMO

Herein, we present experimental data on the record length uniformity within the ensembles of semiconductor nanowires. The length distributions of Ga-catalyzed GaAs nanowires obtained by cost-effective lithography-free technique on silicon substrates systematically feature a pronounced sub-Poissonian character. For example, nanowires with the mean length ⟨L⟩ of 2480 nm show a length distribution variance of only 367 nm2, which is more than twice smaller than the Poisson variance h⟨L⟩ of 808 nm2 for this mean length (with h = 0.326 nm as the height of GaAs monolayer). For 5125 nm mean length, the measured variance is 1200 nm2 against 1671 nm2 for Poisson distribution. A supporting model to explain the experimental findings is proposed. We speculate that the fluctuation-induced broadening of the length distribution is suppressed by nucleation antibunching, the effect which is commonly observed in individual vapor-liquid-solid nanowires but has never been seen for their ensembles. Without kinetic fluctuations, the two remaining effects contributing to the length distribution width are the nucleation randomness for nanowires emerging from the substrate and the shadowing effect on long enough nanowires. This explains an interesting time evolution of the variance that saturates after a short incubation stage but then starts increasing again due to shadowing, remaining, however, smaller than the Poisson value for a sufficiently long time.

7.
Nano Lett ; 16(11): 7183-7190, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27760298

RESUMO

Au-catalyzed III-V nanowire heterostructures based on the group III interchange usually grow straight only in one of the two growth sequences, whereas the other sequence produces kinked geometries; thus, the realization of double heterostructures remains challenging. Here, we investigate the growth of Au-assisted InAs-GaAs and GaAs-InAs axial nanowire heterostructures. A detailed study of the heterostructure morphology as a function of growth parameters and chemical composition of the catalyst nanoparticle is performed by means of scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray analysis. Our results clearly demonstrate that the nanoparticle composition, rather than other growth parameters, as postulated so far, controls the growth mode and the resulting nanowire morphology. Although GaAs easily grows straight on InAs, straight growth of InAs on GaAs is achieved only if the nanoparticle composition is properly tuned. We find that straight InAs segments on GaAs require high group III-to-Au ratios in the nanoparticle (greater than 0.8); otherwise, the droplet wets the sidewalls and the nanowire kinks. We discuss the observed behavior within a theoretical model that relates the nanoparticle stability to the group III-to-Au ratio. Based on this finding, we demonstrate the growth of straight nanowire heterostructures for both sequences. The proposed strategy can be extended to other III-V nanowire heterostructures based on the group III interchange, allowing for straight morphology regardless of the growth sequence, and ultimately for designing nanowire heterostructures with the required properties for different applications.

8.
Nano Lett ; 16(4): 2837-44, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26999355

RESUMO

Quasi-two-dimensional semiconductor materials are desirable for electronic, photonic, and energy conversion applications as well as fundamental science. We report on the synthesis of indium phosphide flag-like nanostructures by epitaxial growth on a nanowire template at 95% yield. The technique is based on in situ catalyst unpinning from the top of the nanowire and its induced migration along the nanowire sidewall. Investigation of the mechanism responsible for catalyst movement shows that its final position is determined by the structural defect density along the nanowire. The crystal structure of the "flagpole" nanowire is epitaxially transferred to the nanoflag. Pure wurtzite InP nanomembranes with just a single stacking fault originating from the defect in the flagpole that pinned the catalyst were obtained. Optical characterization shows efficient highly polarized photoluminescence at room temperature from a single nanoflag with up to 90% degree of linear polarization. Electric field intensity enhancement of the incident light was calculated to be 57, concentrated at the nanoflag tip. The presented growth method is general and thus can be employed for achieving similar nanostructures in other III-V semiconductor material systems with potential applications in active nanophotonics.

9.
Nano Lett ; 15(3): 1780-5, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25651106

RESUMO

Although the various effects of strain on silicon are subject of intensive research since the 1950s the physical background of anomalous piezoresistive effects in Si nanowires (NWs) is still under debate. Recent investigations concur in that due to the high surface-to-volume ratio extrinsic surface related effects superimpose the intrinsic piezoresistive properties of nanostructures. To clarify this interplay of piezoresistive effects and stress related surface potential modifications, we explored a particular tensile straining device (TSD) with a monolithic embedded vapor-liquid-solid (VLS) grown Si NW. Integrating the suspended NW in a gate all around (GAA) field effect transistor (FET) configuration with a transparent gate stack enables optical and field modulated electrical characterization under high uniaxial tensile strain applied along the ⟨111⟩ Si NW growth direction. A model based on stress-induced carrier mobility change and surface charge modulation is proposed to interpret the actual piezoresistive behavior of Si NWs. By controlling the nature and density of surface states via passivation the "true" piezoresistance of the NWs is found to be comparable with that of bulk Si. This demonstrates the indispensability of application-specific NW surface conditioning and the modulation capability of Si NWs properties for sensor applications.

10.
Nanomaterials (Basel) ; 14(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786777

RESUMO

Due to the very efficient relaxation of elastic stress on strain-free sidewalls, III-V nanowires offer almost unlimited possibilities for bandgap engineering in nanowire heterostructures by using material combinations that are attainable in epilayers. However, axial nanowire heterostructures grown using the vapor-liquid-solid method often suffer from the reservoir effect in a catalyst droplet. Control over the interfacial abruptness in nanowire heterostructures based on the group V interchange is more difficult than for group-III-based materials, because the low concentrations of highly volatile group V atoms cannot be measured after or during growth. Here, we develop a self-consistent model for calculations of the coordinate-dependent compositional profiles in the solid and liquid phases during the vapor-liquid-solid growth of the axial nanowire heterostructure Ax0B1-x0C/Ax1B1-x1C with any stationary compositions x0 and x1. The only assumption of the model is that the growth rates of both binaries AC and BC are proportional to the concentrations of group V atoms A and B in a catalyst droplet, requiring high enough supersaturations in liquid phase. The model contains a minimum number of parameters and fits quite well the data on the interfacial abruptness across double heterostructures in GaP/GaAsxP1-x/GaP nanowires. It can be used for any axial III-V nanowire heterostructures obtained through the vapor-liquid-solid method. It forms a basis for further developments in modeling the complex growth process and suppression of the interfacial broadening caused by the reservoir effect.

11.
Nanomaterials (Basel) ; 14(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38251170

RESUMO

Control over the composition of III-V ternary nanowires grown by the vapor-liquid-solid (VLS) method is essential for bandgap engineering in such nanomaterials and for the fabrication of functional nanowire heterostructures for a variety of applications. From the fundamental viewpoint, III-V ternary nanowires based on group V intermix (InSbxAs1-x, InPxAs1-x, GaPxAs1-x and many others) present the most difficult case, because the concentrations of highly volatile group V atoms in a catalyst droplet are beyond the detection limit of any characterization technique and therefore principally unknown. Here, we present a model for the vapor-solid distribution of such nanowires, which fully circumvents the uncertainties that remained in the theory so far, and we link the nanowire composition to the well-controlled parameters of vapor. The unknown concentrations of group V atoms in the droplet do not enter the distribution, despite the fact that a growing solid is surrounded by the liquid phase. The model fits satisfactorily the available data on the vapor-solid distributions of VLS InSbxAs1-x, InPxAs1-x and GaPxAs1-x nanowires grown using different catalysts. Even more importantly, it provides a basis for the compositional control of III-V ternary nanowires based on group V intermix, and it can be extended over other material systems where two highly volatile elements enter a ternary solid alloy through a liquid phase.

12.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903772

RESUMO

Controlling the morphology and composition of semiconductor nano- and micro-structures is crucial for fundamental studies and applications. Here, Si-Ge semiconductor nanostructures were fabricated using photolithographically defined micro-crucibles on Si substrates. Interestingly, the nanostructure morphology and composition of these structures are strongly dependent on the size of the liquid-vapour interface (i.e., the opening of the micro-crucible) in the CVD deposition step of Ge. In particular, Ge crystallites nucleate in micro-crucibles with larger opening sizes (3.74-4.73 µm2), while no such crystallites are found in micro-crucibles with smaller openings of 1.15 µm2. This interface area tuning also results in the formation of unique semiconductor nanostructures: lateral nano-trees (for smaller openings) and nano-rods (for larger openings). Further TEM imaging reveals that these nanostructures have an epitaxial relationship with the underlying Si substrate. This geometrical dependence on the micro-scale vapour-liquid-solid (VLS) nucleation and growth is explained within a dedicated model, where the incubation time for the VLS Ge nucleation is inversely proportional to the opening size. The geometric effect on the VLS nucleation can be used for the fine tuning of the morphology and composition of different lateral nano- and micro-structures by simply changing the area of the liquid-vapour interface.

13.
Materials (Basel) ; 15(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431649

RESUMO

A method for fabricating flexible free-standing ZnO/Zn composite films from the vapor phase using a regular array of silicon microwhiskers as a substrate is presented. The structural and morphological peculiarities, as well as luminescent properties of the films, were studied. The films have a hybrid structure consisting of two main microlayers. The first layer is formed directly on the tops of Si whiskers and has a thickness up to 10 µm. This layer features a polycrystalline structure and well-developed surface morphology. The second layer, which makes up the front side of the films, is up to 100 µm thick and consists of large microcrystals. The films show good bending strength-in particular, resistance to repeated bending and twisting-which is provided by a zinc metallic part constituting the flexible carrier of the films. ZnO photoluminescence was observed from both surfaces of the films but with conspicuous spectral differences. In particular, a significant weakening of ZnO green luminescence (more than 10 times) at an almost constant intensity of UV near-band edge emission was found for the polycrystalline side of the films as compared to the microcrystalline side. A high degree of homogeneity of the luminescent properties of the films over their area was demonstrated. The results obtained emphasize the relevance of further studies of such ZnO structures-in particular, for application in flexible devices, sensors, photocatalysis and light generation.

14.
Nanomaterials (Basel) ; 11(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443844

RESUMO

One of the promising nonvolatile memories of the next generation is resistive random-access memory (ReRAM). It has vast benefits in comparison to other emerging nonvolatile memories. Among different materials, dielectric films have been extensively studied by the scientific research community as a nonvolatile switching material over several decades and have reported many advantages and downsides. However, less attention has been given to low-dimensional materials for resistive memory compared to dielectric films. Particularly, ß-Ga2O3 is one of the promising materials for high-power electronics and exhibits the resistive switching phenomenon. However, low-dimensional ß-Ga2O3 nanowires have not been explored in resistive memory applications, which hinders further developments. In this article, we studied the resistance switching phenomenon using controlled electron flow in the 1D nanowires and proposed possible resistive switching and electron conduction mechanisms. High-density ß-Ga2O3 1D-nanowires on Si (100) substrates were produced via the VLS growth technique using Au nanoparticles as a catalyst. Structural characteristics were analyzed via SEM, TEM, and XRD. Besides, EDS, CL, and XPS binding feature analyses confirmed the composition of individual elements, the possible intermediate absorption sites in the bandgap, and the bonding characteristics, along with the presence of various oxygen species, which is crucial for the ReRAM performances. The forming-free bipolar resistance switching of a single ß-Ga2O3 nanowire ReRAM device and performance are discussed in detail. The switching mechanism based on the formation and annihilation of conductive filaments through the oxygen vacancies is proposed, and the possible electron conduction mechanisms in HRS and LRS states are discussed.

15.
Beilstein J Nanotechnol ; 7: 1574-1578, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144508

RESUMO

We studied the electrical transport properties of Au-seeded germanium nanowires with radii ranging from 11 to 80 nm at ambient conditions. We found a non-trivial dependence of the electrical conductivity, mobility and carrier density on the radius size. In particular, two regimes were identified for large (lightly doped) and small (stronger doped) nanowires in which the charge-carrier drift is dominated by electron-phonon and ionized-impurity scattering, respectively. This goes in hand with the finding that the electrostatic properties for radii below ca. 37 nm have quasi one-dimensional character as reflected by the extracted screening lengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA