Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biochem Biophys Res Commun ; 736: 150855, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39461005

RESUMO

Cognitive disorders represent one of the most common chronic complications of diabetes. Our previous study has demonstrated that long non-coding RNA (lncRNA) Vof-16 is upregulated in the hippocampal tissue of streptozotocin (STZ)-induced diabetic rats. Despite this finding, the specific roles and underlying mechanisms of lncRNA Vof-16 in diabetes-related cognitive dysfunction remain largely unexplored. To elucidate the mechanism involved, lncRNA Vof-16 was overexpressed in rat hippocampal cell line H19-7 through lentivirus transfection. We integrated metabolomics and transcriptomics approaches to identify potential targets and metabolic pathways influenced by lncRNA Vof-16. Key proteins and pathways were subsequently validated using western blotting and immunofluorescence staining. Transcriptomics indicated that lncRNA Vof-16 overexpression may modulate autophagic activity in H19-7 cells. Metabolomic profiling revealed that the primary differential metabolic pathways included trehalose degradation, tryptophan metabolism, vitamin B6 metabolism, glycolysis, pterine biosynthesis, and the pentose phosphate pathway. Ingenuity Pathway Analysis (IPA) of gene-metabolite networks demonstrated that the high lncRNA Vof-16 expression group exhibited a significantly higher association with autophagy compared to the low lncRNA Vof-16 expression group. Western blot results confirmed that lncRNA Vof-16 overexpression led to decreased protein expression levels of ATG3 and ATG12. Specifically, lncRNA Vof-16 reduces autophagy in hippocampal neurons by targeting the elevated levels of phospho-p70S6K, a downstream effector of mTORC1, potentially contributing to the pathogenesis of diabetic cognitive impairment. The construction of gene-metabolite networks may offer promising new strategies for addressing the growing issue of diabetic cognitive impairment.

2.
Neuroimage ; 269: 119916, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736638

RESUMO

There is growing evidence that blood-oxygen-level-dependent (BOLD) activity in the white matter (WM) can be detected by functional magnetic resonance imaging (fMRI). However, the functional relevance and significance of WM BOLD signals remain controversial. Here we investigated whether 7T BOLD fMRI can reveal fine-scale functional organizations of a WM bundle. Population receptive field (pRF) analyses of the 7T retinotopy dataset from the Human Connectome Project revealed clear contralateral retinotopic organizations of two visual WM bundles: the optic radiation (OR) and the vertical occipital fasciculus (VOF). The retinotopic maps of OR are highly consistent with post-mortem dissections and diffusion tractographies, while the VOF maps are compatible with the dorsal and ventral visual areas connected by the WM. Similar to the grey matter (GM) visual areas, both WM bundles show over-representations of the central visual field and increasing pRF size with eccentricity. Hemodynamic response functions of visual WM were slower and wider compared with those of GM areas. These findings clearly demonstrate that WM BOLD at 7 Tesla is closely coupled with neural activity related to axons, encoding highly specific information that can be used to characterize fine-scale functional organizations of a WM bundle.


Assuntos
Substância Branca , Humanos , Substância Branca/fisiologia , Campos Visuais , Imageamento por Ressonância Magnética , Imagem de Tensor de Difusão/métodos , Substância Cinzenta
3.
Artigo em Inglês | MEDLINE | ID: mdl-37482681

RESUMO

A bubbling reactor is an important type of gas scrubber to reduce SO2 emissions in maritime shipping. Both experiments and simulations were conducted to study the relationship between the periodic gas bubbling process and SO2 concentration at the outlet of the reactor, and the entrainment of liquid droplets on SO2 absorption. The accuracy of the model was verified by comparing the bubble size, the depth of bubbles injected into the water, and the SO2 concentration obtained in both experiments and simulations. The gas bubbling process is accompanied by bubble formation, rise, and collapse. The gas bubbling period is affected by the disturbance of the liquid level. The period of the SO2 concentration at the outlet of the gas bubbling reactor is smaller than that at the gas jar outlet which acts as the gas buffering region. The amounts of water carried out of the bubbling reactor by the gas bubbling process increase with the gas flow rates. The droplets and liquid film in the gas jar and the connecting tube play an important role in the absorption of SO2. This study encourages more research to reduce the fluctuation of SO2 concentration and consider droplet entrainment in the design of bubbling reactors.


Assuntos
Água
4.
Environ Res ; 214(Pt 2): 114035, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35932835

RESUMO

Coal miners on the fringes of cities are often exposed to respirable dust hazards. Spray is one of the most effective dust reduction measures. When studying the coupling and collision behavior of droplets and dust particles, it is helpful to optimize the parameter range of the droplets to capture dust particles at the mesoscopic level, to determine the effect of the spray field on the dust particles at the macroscopic level. In this study, the volume of fluid (VOF) method was used to track the interface of multiphase flow. A numerical simulation of 13 working conditions was carried out using the control variable method. Based on the numerical simulation results, we obtained the optimal parameter range for dust to be encapsulated by droplets. To confirm the reliability of the simulation, we independently developed an experimental system and conducted experiments. The simulation results obtained were measured using the experimental system, and an optimal droplet parameter range of 7 µm to settle dust in a coal mining face was determined. Numerical simulation using a mesoscopic method to study dust-spray coupling produced reliable results, which can be used in the practical application of spray dust reduction and has wider relevance for practical engineering.


Assuntos
Minas de Carvão , Mineradores , Exposição Ocupacional , Carvão Mineral/análise , Minas de Carvão/métodos , Poeira/análise , Humanos , Reprodutibilidade dos Testes
5.
Entropy (Basel) ; 24(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421505

RESUMO

In this work, the freezing characteristics of double-droplet impact on three typical wettability surfaces were investigated by coupling the solidification and melting VOF models. Different temperature conditions were adopted to study the influence of icing speed on droplet behavior. Simulation results show that the motion of the double-droplet impact is consistent with that of a single droplet in the early spreading stage but behaves differently in the retraction stage. The wetting area evolution during the impact-freezing process shows different tendency for hydrophilic and hydrophobic surfaces: Compared with single droplets, double droplets have a smaller wetting area factor on hydrophilic surfaces but a larger one on superhydrophobic surfaces. In addition, three typical impact results are observed for the double-droplet impact on a superhydrophobic cold surface: full rebound, adhesive avulsion, and full adhesion, which reflects the interaction of droplet merging and solidification during the impact freezing of the double droplet. These findings may deepen our understanding of the mechanism of impact freezing on a cold surface, it provides reference for the associated applications and technologies in icing/anti-icing.

6.
Entropy (Basel) ; 24(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36359617

RESUMO

The negative-step stilling basin is an efficient and safe energy dissipator for high-head, large-unit discharge high-dam projects. However, studies of the effects of the negative step on the hydraulic performance of a high-dam stilling basin have not been conclusive. In the present study, a 2D RANS-VOF numerical model was developed to simulate the flow field of a negative-step stilling basin. The numerical model was validated with a physical model and then used to simulate and test the performance of the negative-step stilling basin with different step heights and incident angles. The results showed that the flow pattern, the free-surface profile, the velocity profile, the characteristic lengths are strongly influenced by the step geometry. Increasing the height of the step will increase the relative flow depth and the reattachment length in the basin, but reduce the bottom velocity and the roller length. The incident angle has no significant influence on the flow pattern of the negative-step stilling basin, and increasing the incident angle of the step will reduce the bottom velocity and the reattachment length. Both the step height and the incident angle have no significant influence on the energy dissipation efficiency because of the high submergence conditions in this study.

7.
Biotechnol Appl Biochem ; 68(1): 60-70, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32011770

RESUMO

Flat panels are the most spread type of photobioreactors for studying light effects on a microalgae culture. Their low thickness, usually between 1 and 3 cm, aims at ensuring light homogeneity across the culture. Yet because optical density has to remain very low, studies are still limited to low cell density cultures. To alleviate this problem, even thinner photobioreactors can be designed. Nevertheless, thin flat panel reactors are very prone to induce high shear stress. This work aimed at designing a new millimeter thin panel photobioreactor to study light effects on Chlorella and Scenedesmus genera. We proposed a numerical workflow that is capable of assessing the shear stress intensity in such a reactor. The numerical predictions were validated at three different levels: 2D preliminary simulations were able to reproduce bubble commonly known behaviors; close to the nozzle, the predictions were successfully confronted to shadowgraphy experimental reference; at the mini bioreactor scale, experimental and numerical mixing were found to be close. After these throughout validations, shear stress intensity in the photobioreactor was calculated over 1000 Lagrangian tracers. The experienced shear stress was agglomerated at the population level. From the computed shear stress, it was possible to choose the minimal reactor thickness that would not hinder cell growth.


Assuntos
Chlorella/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Fotobiorreatores , Scenedesmus/crescimento & desenvolvimento , Estresse Mecânico
8.
Sensors (Basel) ; 18(9)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177643

RESUMO

The cone meter has been paid increasing attention in wet gas measurement, due to its distinct advantages. However, the cone sensor, which is an essential primary element of the cone meter, plays a role in the measurement of wet gas flow that is important, but not fully understood. In this article, we investigate the gas-liquid annular flow through a cone sensor by experiment and numerical simulation. Emphasis is put on the influences of pressure recovery characteristics and flow structure, and how they are affected by the cone sensor. The results show that the vortex length is shortened in gas-liquid annular flow, compared with that in single-phase gas flow. The pressure recovery length is closely related with the vortex length, and shorter vortex length leads to shorter pressure recovery length. The gas-liquid distribution suggests that flow around the apex of back-cone is very stable, little liquid is entrained into the vortex, and no liquid appears around the low pressure tapping, which makes a more stable pressure at the apex of cone sensor feasible. This finding highlights the importance of obtaining the low pressure from the back-cone apex, which should be recommended in the multiphase flow measurement. Our results may help to guide the optimization of the cone sensor structure in the wet gas measurement.

9.
Int J Pharm ; 656: 124037, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38522489

RESUMO

Interest in 3D printing has been growing rapidly especially in pharmaceutical industry due to its multiple advantages such as manufacturing versatility, personalization of medicine, scalability, and cost effectiveness. Inkjet based 3D printing gained special attention after FDA's approval of Spritam® manufactured by Aprecia pharmaceuticals in 2015. The precision and printing efficiency of 3D printing is strongly influenced by the dynamics of ink/binder jetting, which further depends on the ink's fluid properties. In this study, Computational Fluid Dynamics (CFD) has been utilized to study the drop formation process during inkjet-based 3D printing for piezoelectric and thermal printhead geometries using Volume of Fluid (VOF) method. To develop the CFD model commercial software ANSYS-Fluent was used. The developed CFD model was experimentally validated using drop watcher setup to record drop progression and drop velocity. During the study, water, Fujifilm model fluid, and Amitriptyline drug solutions were evaluated as the ink solutions. The drop properties such as drop volume, drop diameter, and drop velocity were examined in detail in response to change ink solution properties such as surface tension, viscosity, and density. A good agreement was observed between the experimental and simulation data for drop properties such as drop volume and drop velocity.


Assuntos
Hidrodinâmica , Tinta , Impressão Tridimensional , Comprimidos , Tecnologia Farmacêutica , Viscosidade , Tecnologia Farmacêutica/métodos , Amitriptilina/química , Simulação por Computador , Tensão Superficial
10.
Heliyon ; 10(19): e38320, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39386872

RESUMO

In this study, 3D model of a hollow glycerin droplet impacting on a cylindrical cross-section was numerically analyzed to coat the lateral surface of the cylinder. The hollow droplets had exterior diameters of 5.5 mm, 5.25 mm, and 5 mm, and the impact velocity was 1 m/s. To model, the influence of droplets on OpenFoam software, the Volume Of Fluid technique was utilized (VOF). The Newtonian, incompressible, and laminar fluid phase of a glycerin droplet was investigated using air with a diameter of 4 mm as the gas phase. The hydrodynamic behavior of droplet collisions as well as fluid properties were investigated. As a result, when can be observed in the simple cylinder, as the outer diameter increased, the spread diameter shrank. The least amount distributed diameter in Case 3 was 1.404, whereas the highest amount in Case 4 was 1.625. The situations with a simple lateral surface, uniform spread occurred, while in cases with a spiral lateral surface, non-uniform spread occurred. Observed the maximum length in Case 3 was 4.12 mm and the minimum was 1.83 mm in Case 4.

11.
Sci Rep ; 14(1): 20470, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227678

RESUMO

In order to ensure the filling integrity of complex counter-gravity casting and improve metallurgical quality, it is necessary to shorten the filling time while avoiding air entrainments. To address this contradiction, a novel nonlinear pressurization method was proposed in this study. Through systematically analyzing the relationship between critical gating velocity and stable filling height, a criterion for iterative calculation of nonlinear pressurization curve was established, and an empirical expression between nonlinear pressurizing speed and the filling height was obtained. Based on the empirical expression, a nonlinear pressurization curve can be designed according to the casting structures and initial pressurizing speeds. The above nonlinear pressure curve design method was validated through water filling experiments. It was proved that the nonlinear pressure curve can shorten the filling time while avoiding air entrainments. It provides important processing control method for improving the low-pressure casting performance of complex castings.

12.
Pest Manag Sci ; 80(9): 4725-4735, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38804696

RESUMO

BACKGROUND: Pesticide dilution is one of the essential aspects of plant protection. However, the effect of dilution on the deposition characteristics of pesticide droplets containing particulate additives on crop leaf surfaces remains unclear and warrants further research. Herein, a validated computational fluid dynamics (CFD)-volume of fluid (VOF)-discrete phase model (DPM) numerical model was developed to analyze the influence of particle content on the deposition behavior of droplets on the leaf surface comparatively, taking into account the particle content of different diluted thifluzamide solutions. Additionally, the study aimed to analyze further the kinetic behavior of pesticide droplets landing on rice leaves across different dilution conditions. RESULTS: Pesticide droplets diluted 100-fold had a lower retraction rate during spreading than particle-free droplets, so the solution is more easily deposited in the leaves. Moreover, the low dilution (high concentration) increased the critical adhesion rate between droplets and rice leaves, inhibiting the bouncing of droplets on the leaf surface, thus promoting their effective deposition on the surface. In addition, low dilution (high concentration) is not conducive to spreading droplets when the impact velocity is high, and it also results in a large amount of pesticide use. CONCLUSION: The actual application process can be through understanding the dilution factor of the configured pesticide solution, and reasonable adjustment of the nozzle pressure can effectively improve the utilization rate of pesticides and reduce the pollution brought by pesticides to the environment. These results provide an essential reference for studying pesticide droplet deposition characteristics, including rice plant protection and spraying technology. © 2024 Society of Chemical Industry.


Assuntos
Hidrodinâmica , Oryza , Praguicidas , Folhas de Planta , Oryza/química , Oryza/crescimento & desenvolvimento , Folhas de Planta/química , Praguicidas/química , Modelos Teóricos , Tamanho da Partícula
13.
Materials (Basel) ; 17(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124359

RESUMO

The oxygen discharge process significantly affects the electrochemical performance of a proton exchange membrane water electrolyzer (PEMWE), which requires an optimal structure of the flow field implemented in the bipolar plate (BP) component. In this study, we numerically investigated the two-phase (liquid water and oxygen) flow in the PEMWE's channel region with different outlet manifold structures utilizing the volume of fluid (VOF) model. Then, the oxygen volume fraction at the liquid/gas diffusion layer (L/GDL) surface, i.e., the interface of the channel and L/GDL, obtained by the liquid water and oxygen flow model was incorporated into a three-dimensional (3D) PEMWE model, which made it possible to predict the influence of the outlet manifold structure on the multiple transfers inside the whole electrolyzer as well as the electrochemical performance. The results indicate that the existence of oxygen in the flow field significantly decreased the electrolyzer voltage at a fixed operation current density and deteriorated the uniform distribution of the oxygen amount, current density (corresponding to the electrochemical reaction rate) and temperature in the membrane electrode assembly (MEA), indicating that the rapid oxygen removal from the flow field is preferred in the operation of the electrolyzer. Moreover, slight increases in the width of the outlet manifold were helpful in relieving the oxygen accumulation in the anode CL and, hence, improved the electrolyzer performance with more uniform distribution characteristics.

14.
Micromachines (Basel) ; 14(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37893359

RESUMO

The metal microdroplet deposition manufacturing technique has gained extensive attention due to its potential applications in microstructure fabrication. In order to fabricate components such as microchannel heat sinks and microchannel reactors, this paper investigates the interactions and influences between microdroplets and substrates, as well as between microdroplets themselves. The transient phenomena during the fusion of metal microdroplets in contact with the substrate and the formation of inclined columns, as well as the solid-liquid coupling and morphology formation processes during the collision between microdroplets, are analyzed. The influence of microdroplet spacing on the morphology of microchannels during their formation is specifically studied. A three-dimensional finite element numerical model for the deposition of metal microdroplets forming inclined pillars is established based on the volume of fluid (VOF) method. The model treats the protective gas around the microdroplet as an empty zone and the microdroplet as a single-phase fluid. Simulation analysis is conducted to investigate the forming patterns of unsupported microdroplets at different spacing and their impact on the fusion morphology of microchannel components. Building upon this, a series of validation experiments are conducted using a piezoelectric microdroplet generator to produce uniform aluminum alloy microdroplets with a diameter of approximately 600 µm. A method for fabricating metal microchannel structures is obtained, which is expected to be applied in fields such as scattering structures for high-power electronic devices and microreactors in microchemical fields.

15.
Heliyon ; 9(11): e21855, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045155

RESUMO

In this paper, the collapse behavior of a single cavitation bubble at different distances near a solid particle of typical scales is numerically simulated and researched with the volume of fluid (VOF) method. Based on the key parameters analysis of the pressure field, velocity vector, collapse time the tendency of cavitation bubble collapse characteristics at different distances during the change of particle size is studied with the variable of the distance and relative size between the particle and the cavitation bubble. The dimensionless distance parameter 'γ' is specifically presented in the simulation process, the cavitation bubble collapse impact is largely directed to the particle when 3>γ > 2, while the wall hardly affects the interaction between the cavitation bubble and the solid particle as γ > 3. The results illustrate that as the solid particle and wall exist, the distance and particle size affect both the peak collapse pressure and the collapse jet velocity of the cavitation bubble, and the influence of solid wall on the cavitation bubble at the same distance is much greater than that of solid particles. When the particle size increases, the particle gradually affects the cavitation bubble in a way similar to the wall. While as the distance decreases or the particle size increases, the influence of particle and wall on the evolution process of the cavitation bubble expands, meanwhile, the collapse pressure and collapse jet velocity of the cavitation bubble are promoted with the optimized distance and particle size, which brings marvelous cavitation effect. The numerical methods and conclusions of this paper provide a valuable reference for cavitation applications of sand-containing fluids.

16.
Ultrason Sonochem ; 99: 106567, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37647743

RESUMO

In this study, a numerical model of cavitation bubble in the narrow-gap pure Sn liquid medium was established by two-dimensional compressible multiphase flow simulation. The effects of the pressure amplitude and the gap size on the shape, size and position of the cavitation bubble were investigated. The calculation results showed that the cavitation bubble in the narrow-gap soldering seam could exist stably after experiencing two stages of the nonlinear oscillation and the near-wall oscillation with the low-amplitude ultrasound and moved directionally on the metal substrate surface. When the pressure amplitude increased or the gap size decreased, the directional motion rate of the cavitation bubble increased and the shape of the bubble was elliptical due to the confinement effect of the substrate wall. The ultrasonic degassing mechanism of the narrow-gap soldering seam under the action of exponential decay ultrasonic vibration was analyzed by comparing the fluid pressure and velocity field variations. The flow field in the center of the soldering seam vibrated stronger than that of the peripheral regions, which could promote the outward motion of the cavitation bubble. Within the calculation time of 0.002 s, the maximum horizontal motion distance of bubble in the narrow-gap soldering seam was 1.13 mm.

17.
Materials (Basel) ; 16(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834569

RESUMO

The dynamics of air (gas) bubbles in a column of cement slurry is examined numerically. The air injected at the bottom of a laboratory-scale column through a porous distributor plate spatially distributes and migrates as a swarm of bubbles throughout the slurry toward the freeboard. The two-phase system of the cement slurry and the air bubbles is modeled using the conservation equations of mass and linear momentum in the framework of the volume-of-fluid (VOF) approach. The cement slurry is modeled using the Herschel-Bulkley and Bingham fluid models. Results show that the mean Sauter diameter and the mean rise velocity of the bubbles decrease with the gas flow rate. Meanwhile, it is found that the rising of the bubbles is controlled by breakup events, along with relatively weak path instabilities of the bubbles resulting in relatively straight trajectories, independent of the gas flow rate. The extent of the yielded region appears larger for the Herschel-Bulkley model compared to the Bingham fluid model (by approximately 10%).

18.
Micromachines (Basel) ; 14(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37893322

RESUMO

As the power electronics landscape evolves, pushing for greater vertical integration, capillary underfilling is considered a versatile encapsulation technique suited for iterative development cycles of innovative integration concepts. Since a defect-free application is critical, this study proposes a capillary two-phase flow simulation, predicting both the flow pattern and velocity with remarkable precision and efficiency. In a preliminary performance evaluation, Volume of Fluid (VOF) outperforms the Level-Set method in terms of accuracy and computation time. Strategies like HRIC blending, artificial viscosity, and implicit Multi-Stepping prove effective in optimizing the numerical VOF scheme. Digital mapping using physical experiments and virtual simulations validates transient flow predictions, achieving excellent agreement with deviations as low as 1.48-3.34%. The accuracy of flow predictions is thereby greatly influenced by non-Newtonian viscosity characteristics in the low shear range and time-dependent contact angle variations. The study further explores flow manipulation concepts, focusing on local flow speed adjustment, gap segmentation, and the use of arcuate shapes to influence interface confluence near the chip. Experimental validation corroborates the effectiveness of each design intervention. In conclusion, this research highlights the potential of predictive engineering to develop flow-optimized package designs that enhance reliability while supporting high manufacturing yields.

19.
Environ Sci Pollut Res Int ; 30(21): 60129-60149, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37017838

RESUMO

The dust pollution at the fully mechanized heading face has seriously threatened the health of the miners. As the main technical means, the outer spray of a roadheader has the problems of small coverage of the fog field and low dust removal efficiency. Based on the multiscale swirl atomization model of LES-VOF, this study simulated and analyzed the atomization process of the nozzle. The influence law of the diameter, the length and the circulation area ratio of the swirl chamber, and the swirl core angle on the swirl number and atomization effect were determined, and the nonlinear function relationship between variables was obtained. With the help of the BP neural network model, a new type of swirl nozzle is developed which is suitable for the outside spray system at the fully mechanized heading face. The experimental results show that the error between the predicted results of the new swirl nozzle and BP network model is less than 15%, the atomization angle θc is 24.2°, the average particle size D32 is 64.43 µm, and the effective range Reff is about 2.1 m. At the same time, the total dust removal efficiency and respirable dust removal efficiency of the new swirl nozzle at the driver's place are 61.10% and 63.85%, respectively, which are 21.69% and 20.92% higher than the original nozzle.


Assuntos
Poeira , Poluição Ambiental , Tamanho da Partícula
20.
Brain Struct Funct ; 227(9): 2897-2908, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36192557

RESUMO

Cognitive functional neuroimaging has been around for over 30 years and has shed light on the brain areas relevant for reading. However, new methodological developments enable mapping the interaction between functional imaging and the underlying white matter networks. In this study, we used such a novel method, called the disconnectome, to decode the reading circuitry in the brain. We used the resulting disconnection patterns to predict a typical lesion that would lead to reading deficits after brain damage. Our results suggest that white matter connections critical for reading include fronto-parietal U-shaped fibres and the vertical occipital fasciculus (VOF). The lesion most predictive of a reading deficit would impinge on the left temporal, occipital, and inferior parietal gyri. This novel framework can systematically be applied to bridge the gap between the neuropathology of language and cognitive neuroscience.


Assuntos
Acidente Vascular Cerebral , Substância Branca , Humanos , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Rede Nervosa/patologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Idioma , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA