Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Cancer ; 143(7): 1786-1796, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29696636

RESUMO

Oncolytic viruses, including the oncolytic rhabdovirus VSV-GP tested here, selectively infect and kill cancer cells and are a promising new therapeutic modality. Our aim was to study the efficacy of VSV-GP, a vesicular stomatitis virus carrying the glycoprotein of lymphocytic choriomeningitis virus, against prostate cancer, for which current treatment options still fail to cure metastatic disease. VSV-GP was found to infect 6 of 7 prostate cancer cell lines with great efficacy. However, susceptibility was reduced in one cell line with low virus receptor expression and in 3 cell lines after interferon alpha treatment. Four cell lines had developed resistance to interferon type I at different levels of the interferon signaling pathway, resulting in a deficient antiviral response. In prostate cancer mouse models, long-term remission was achieved upon intratumoral and, remarkably, also upon intravenous treatment of subcutaneous tumors and bone metastases. These promising efficacy data demonstrate that treatment of prostate cancer with VSV-GP is feasible and safe in preclinical models and encourage further preclinical and clinical development of VSV-GP for systemic treatment of metastatic prostate cancer.


Assuntos
Efeito Citopatogênico Viral , Modelos Animais de Doenças , Terapia Viral Oncolítica , Neoplasias da Próstata/terapia , Vírus da Estomatite Vesicular Indiana/fisiologia , Animais , Apoptose , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/patologia , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Ther Methods Clin Dev ; 32(2): 101252, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38774583

RESUMO

Virus particle (VP) quantification plays a pivotal role in the development of production processes of VPs for virus-based therapies. The yield based on total VP count serves as a process performance indicator for evaluating process efficiency and consistency. Here, a label-free particle quantification method for enveloped VPs was developed, with potential applications in oncolytic virotherapy, vaccine development, and gene therapy. The method comprises size-exclusion chromatography (SEC) separation using high-performance liquid chromatography (HPLC) instruments. Ultraviolet (UV) was used for particle quantification and multi-angle light scattering (MALS) for particle characterization. Consistent recoveries of over 97% in the SEC were achieved upon mobile phase screenings and addition of bovine serum albumin (BSA) as sample stabilizer. A calibration curve was generated, and the method's performance and applicability to in-process samples were characterized. The assay's repeatability variation was <1% and its intermediate precision variation was <3%. The linear range of the method spans from 7.08 × 108 to 1.72 × 1011 VP/mL, with a limit of detection (LOD) of 7.72 × 107 VP/mL and a lower limit of quantification (LLOQ) of 4.20 × 108 VP/mL. The method, characterized by its high precision, requires minimal hands-on time and provides same-day results, making it efficient for process development.

3.
Vaccines (Basel) ; 12(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39203993

RESUMO

Numerous factors influence the magnitude and effector phenotype of vaccine-induced CD8+ T cells, thereby potentially impacting treatment efficacy. Here, we investigate the effect of vaccination dose, route of immunization, presence of a target antigen-expressing tumor, and heterologous prime-boost with peptide vaccine partner following vaccination with antigen-armed VSV-GP. Our results indicate that a higher vaccine dose increases antigen-specific CD8+ T cell proportions while altering the phenotype. The intravenous route induces the highest proportion of antigen-specific CD8+ T cells together with the lowest anti-viral response followed by the intraperitoneal, intramuscular, and subcutaneous routes. Moreover, the presence of a B16-OVA tumor serves as pre-prime, thereby increasing OVA-specific CD8+ T cells upon vaccination and thus altering the ratio of anti-tumor versus anti-viral CD8+ T cells. Interestingly, tumor-specific CD8+ T cells exhibit a different phenotype compared to bystander anti-viral CD8+ T cells. Finally, the heterologous combination of peptide and viral vaccine elicits the highest proportion of antigen-specific CD8+ T cells in the tumor and tumor-draining lymph nodes. In summary, we provide a basic immune characterization of various factors that affect anti-viral and vaccine target-specific CD8+ T cell proportions and phenotypes, thereby enhancing our vaccinology knowledge for future vaccine regimen designs.

4.
J Mol Biol ; 435(13): 168096, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086948

RESUMO

Human papilloma virus (HPV) infections are associated with almost all cervical cancers and to a lower extend also with anogenital or oropharyngeal cancers. HPV proteins expressed in HPV-associated tumors are attractive antigens for cancer vaccination strategies as self-tolerance, which is associated with most endogenous tumor-associated antigens, does not need to be overcome. In this study, we generated a live attenuated cancer vaccine based on the chimeric vesicular stomatitis virus VSV-GP, which has previously proven to be a potent vaccine vector and oncolytic virus. Genes at an earlier position in the genome more to the 3' end are expressed stronger compared to genes located further downstream. By inserting an HPV16-derived antigen cassette consisting of E2, E6 and E7 into VSV-GP either at first (HPVp1) or fifth (HPVp5) position in VSV-GP's genome we aimed to analyze the effect of vaccine antigen position and consequently expression level on viral fitness, immunogenicity, and anti-tumoral efficacy in a syngeneic mouse tumor model. HPVp1 expressed higher amounts of HPV antigens compared to HPVp5 in vitro but had a slightly delayed replication kinetic which overall translated into increased HPV-specific T cell responses upon vaccination of mice. Immunization with both vectors protected mice in prophylactic and in therapeutic TC-1 tumor models with HPVp1 being more effective in the prophylactic setting. Taken together, VSV-GP is a promising candidate as therapeutic HPV vaccine and first position of the vaccine antigen in a VSV-derived vector seems to be superior to fifth position.


Assuntos
Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vesiculovirus , Animais , Humanos , Camundongos , Papillomavirus Humano , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/virologia , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/uso terapêutico , Vacinas Atenuadas , Neoplasias Experimentais
5.
Mol Ther Methods Clin Dev ; 28: 190-207, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36700123

RESUMO

Viral replication places oncolytic viruses (OVs) in a unique niche in the field of drug pharmacokinetics (PK) as their self-amplification obscures exposure-response relationships. Moreover, standard bioanalytical techniques are unable to distinguish the input from replicated drug products. Here, we combine two novel approaches to characterize PK and biodistribution (BD) after systemic administration of vesicular stomatitis virus pseudotyped with lymphocytic choriomeningitis virus glycoprotein (VSV-GP) in healthy mice. First: to decouple input drug PK/BD versus replication PK/BD, we developed and fully characterized a replication-incompetent tool virus that retained all other critical attributes of the drug. We used this approach to quantify replication in blood and tissues and to determine its impact on PK and BD. Second: to discriminate the genomic and antigenomic viral RNA strands contributing to replication dynamics in tissues, we developed an in situ hybridization method using strand-specific probes and assessed their spatiotemporal distribution in tissues. This latter approach demonstrated that distribution, transcription, and replication localized to tissue-resident macrophages, indicating their role in PK and BD. Ultimately, our study results in a refined PK/BD profile for a replicating OV, new proposed PK parameters, and deeper understanding of OV PK/BD using unique approaches that could be applied to other replicating vectors.

6.
Front Immunol ; 14: 1270908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045703

RESUMO

Introduction: The generation of an HIV-1 vaccine able to induce long-lasting protective immunity remains a main challenge. Here, we aimed to modify next-generation soluble, prefusion-stabilized, close-to-native, glycan-engineered clade C gp140 envelope (Env) trimers (sC23v4 KIKO and ConCv5 KIKO) for optimal display on the cell surface following homologous or heterologous vector delivery. Methods: A combination of the following modifications scored best regarding the preservation of closed, native-like Env trimer conformation and antigenicity when using a panel of selected broadly neutralizing (bnAb) and non-neutralizing (nnAb) monoclonal antibodies for flow cytometry: i) replacing the natural cleavage site with a native flexible linker and introducing a single amino acid substitution to prevent CD4 binding (*), ii) fusing a heterologous VSV-G-derived transmembrane moiety to the gp140 C-terminus, and iii) deleting six residues proximal to the membrane. Results: When delivering membrane-tethered sC23v4 KIKO* and ConCv5 KIKO* via DNA, VSV-GP, and NYVAC vectors, the two native-like Env trimers provide differential antigenicity profiles. Whereas such patterns were largely consistent among the different vectors for either Env trimer, the membrane-tethered ConCv5 KIKO* trimer adopted a more closed and native-like structure than sC23v4 KIKO*. In immunized mice, VSV-GP and NYVAC vectors expressing the membrane-tethered ConCv5 KIKO* administered in prime/boost combination were the most effective regimens for the priming of Env-specific CD4 T cells among all tested combinations. The subsequent booster administration of trimeric ConCv5 KIKO* Env protein preserved the T cell activation levels between groups. The evaluation of the HIV-1-specific humoral responses induced in the different immunization groups after protein boosts showed that the various prime/boost protocols elicited broad and potent antibody responses, preferentially of a Th1-associated IgG2a subclass, and that the obtained antibody levels remained high at the memory phase. Discussion: In summary, we provide a feasible strategy to display multiple copies of native-like Env trimers on the cell surface, which translates into efficient priming of sustained CD4+ T cell responses after vector delivery as well as broad, potent, and sustained antibody responses following booster immunizations with the homologous, prefusion-stabilized, close-to-native ConCv5 KIKO* gp140 Env trimer.


Assuntos
Vacinas contra a AIDS , Soropositividade para HIV , HIV-1 , Animais , Camundongos , Anticorpos Anti-HIV , HIV-1/genética , Proteínas de Membrana , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Anticorpos Neutralizantes , Vacinas contra a AIDS/genética , Imunidade
7.
Front Bioeng Biotechnol ; 10: 992069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36394051

RESUMO

Purification of viruses, especially for therapeutic purposes, is a tedious and challenging task. The challenges arise due to the size and surface complexity of the virus particles. VSV-GP is a promising oncolytic virus, which has been approved for phase I clinical trials by the Food and Drug Administration (FDA) of United States and Paul Ehrlich Institute (PEI) of Germany. The virus particles of VSV-GP are larger in size than vectors commonly used for gene therapy (e.g., adenovirus, adeno-associated virus, etc.). The current established proprietary clinical-grade manufacturing process for the purification of VSV-GP encompasses several chromatographic and non-chromatographic steps. In this study, we describe a new single-step purification process for the purification of VSV-GP virus, using cation exchange convective flow column with relatively higher yields. The purified virus was characterized for its quality attributes using TCID50 assay (for viral infectivity), host cell protein contaminant ELISA, SDS-PAGE, size exclusion chromatography (SEC), and cryo-electron microscopy. Furthermore, the purified viral therapeutic material was tested in vivo for its efficacy and safety. All these characterization methods demonstrated a therapeutic virus preparation of high purity and yield, which can be readily used for various studies.

8.
Methods Mol Biol ; 2058: 155-177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31486037

RESUMO

In addition of being directly tumoricidal, oncolytic viruses have emerged as potent partners for established and investigational immunotherapies due to their immune-stimulatory effects. The shifting focus on virus-mediated immune modulation calls for a comprehensive analysis of the tumor microenvironment (TME) and the factors orchestrating the antiviral and antitumor immune response. The oncolytic VSV-GP studied in our lab is a safe and potent antitumor agent with a fast replication cycle and killing of a broad range of different cancer types. It induces a robust local inflammatory conversion of the TME and drives a strong adaptive immune response toward the tumor. Here we present our multidisciplinary approach to study VSV-GP treatment effects in tumors by assessing both immune cells (tumor-infiltrating lymphocytes and tumor-associated macrophages) and immune-regulatory factors (cytokines) as well as characterizing immune signatures using an immune-targeted NanoString gene expression system.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Animais , Terapia Combinada , Citocinas/metabolismo , Terapia Genética , Vetores Genéticos/genética , Humanos , Fatores Imunológicos , Imunofenotipagem , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Transcrição Gênica , Resultado do Tratamento , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
9.
Methods Mol Biol ; 2058: 237-248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31486042

RESUMO

In vivo studies are the mainstay of translational immune-oncology and virotherapy research. In general oncology, bioluminescence imaging provides a convenient and reliable tool to visualize disseminated tumors and monitor growth kinetics or treatment effects. Unique aspects of this method in the field of oncolytic viruses are tracing the process of tumor-specific targeting, assessing potential off-target replication, and visualizing intratumoral spread. In addition, the longitudinal monitoring of virus activity kinetics over time is a very powerful feature supporting the subsequent, often elaborate, preclinical biodistribution and pharmtox program. Here we present a step-by-step standard imaging protocol used in our group for both tumor and virus monitoring, along with background information and general principles that should allow the reader to modify and adapt the protocol according to their needs.


Assuntos
Terapia Genética , Vetores Genéticos/genética , Imagem Molecular , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Animais , Análise de Dados , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Processamento de Imagem Assistida por Computador , Medições Luminescentes , Camundongos , Imagem Molecular/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Software , Distribuição Tecidual , Transgenes , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Vaccines (Basel) ; 7(3)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277325

RESUMO

The respiratory syncytial virus (RSV) is one major cause of lower respiratory tract infections in childhood and an effective vaccine is still not available. We previously described a new rhabdoviral vector vaccine, VSV-GP, a variant of the vesicular stomatitis virus (VSV), where the VSV glycoprotein G is exchanged by the glycoprotein GP of the lymphocytic choriomeningitis virus. Here, we evaluated VSV-GP as vaccine vector for RSV with the aim to induce RSV neutralizing antibodies. Wild-type F (Fwt) or a codon optimized version (Fsyn) were introduced at position 5 into the VSV-GP genome. Both F versions were efficiently expressed in VSV-GP-F infected cells and incorporated into VSV-GP particles. In mice, high titers of RSV neutralizing antibodies were induced already after prime and subsequently boosted by a second immunization. After challenge with RSV, viral loads in the lungs of immunized mice were reduced by 2-3 logs with no signs of an enhanced disease induced by the vaccination. Even a single intranasal immunization significantly reduced viral load by a factor of more than 100-fold. RSV neutralizing antibodies were long lasting and mice were still protected when challenged 20 weeks after the boost. Therefore, VSV-GP is a promising candidate for an effective RSV vaccine.

11.
Viruses ; 11(2)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30769947

RESUMO

A chimeric vesicular stomatitis virus with the glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, is a potent viral vaccine vector that overcomes several of the limitations of wild-type VSV. Here, we evaluated the potential of VSV-GP as an HIV vaccine vector. We introduced genes for different variants of the HIV-1 envelope protein Env, i.e., secreted or membrane-anchored, intact or mutated furin cleavage site or different C-termini, into the genome of VSV-GP. We found that the addition of the Env antigen did not attenuate VSV-GP replication. All HIV-1 Env variants were expressed in VSV-GP infected cells and some were incorporated very efficiently into VSV-GP particles. Crucial epitopes for binding of broadly neutralizing antibodies against HIV-1 such as MPER (membrane-proximal external region), CD4 binding site, V1V2 and V3 loop were present on the surface of VSV-GP-Env particles. Binding of quaternary antibodies indicated a trimeric structure of VSV-GP incorporated Env. We detected high HIV-1 antibody titers in mice and showed that vectors expressing membrane-anchored Env elicited higher antibody titers than vectors that secreted Envs. In rabbits, Tier 1A HIV-1 neutralizing antibodies were detectable after prime immunization and titers further increased after boosting with a second immunization. Taken together, VSV-GP-Env is a promising vector vaccine against HIV-1 infection since this vector permits incorporation of native monomeric and/or trimeric HIV-1 Env into a viral membrane.


Assuntos
Vacinas contra a AIDS/imunologia , Vetores Genéticos , Anticorpos Anti-HIV/sangue , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Feminino , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/genética , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Vírus da Estomatite Vesicular Indiana , Replicação Viral
12.
Front Immunol ; 10: 2941, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921191

RESUMO

The generation of a vaccine against HIV-1 able to induce durable protective immunity continues a major challenge. The modest efficacy (31.2%) of the phase III RV144 clinical trial provided the first demonstration that a prophylactic HIV/AIDS vaccine is achievable but emphasized the need for further refinements of vaccine candidates, formulations, and immunization regimens. Here, we analyzed in mice the immunogenicity profile elicited by different homologous and heterologous prime/boost combinations using the modified rhabdovirus VSV-GP combined with DNA or poxviral NYVAC vectors, all expressing trimeric membrane-bound Env (gp145) of HIV-1 96ZM651 clade C, with or without purified gp140 protein component. In cultured cells infected with recombinant VSV-GP or NYVAC viruses, gp145 epitopes at the plasma membrane were recognized by human HIV-1 broadly neutralizing antibodies (bNAbs). In immunized mice, the heterologous combination of VSV-GP and NYVAC recombinant vectors improved the induction of HIV-1 Env-specific humoral and cellular immune responses compared to homologous prime/boost protocols. Specifically, the combination of VSV-GP in the prime and NYVAC in the boost induced higher HIV-1 Env-specific T cell (CD4/CD8 T cells and T follicular helper -Tfh- cells) immune responses compared to the use of DNA or NYVAC vectors in the prime and VSV-GP in the boost. Such enhanced T cell responses correlated with an enhancement of the Env-specific germinal center (GC) B cell population and with a heavily biased Env-specific response toward the Th1-associated IgG2a and IgG3 subclasses, while the other groups showed a Th2-associated IgG1 bias. In summary, our T and B cell population data demonstrated that VSV-GP-based vectors could be taken into consideration as an optimized immunogenic HIV-1 vaccine candidate component against HIV-1 when used for priming in heterologous combinations with the poxvirus vector NYVAC as a boost.


Assuntos
Vacinas contra a AIDS , Linfócitos B/imunologia , Vetores Genéticos , HIV-1 , Poxviridae , Multimerização Proteica , Rhabdoviridae , Linfócitos T/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Embrião de Galinha , Chlorocebus aethiops , Feminino , Anticorpos Anti-HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
13.
Viruses ; 10(3)2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498639

RESUMO

Previously, we described VSV-GP, a modified version of the vesicular stomatitis virus, as a non-neurotoxic oncolytic virus that is effective for the treatment of malignant glioblastoma and ovarian cancer. Here, we evaluate the therapeutic efficacy of VSV-GP for malignant melanoma. All of the human, mouse, and canine melanoma cell lines that were tested, alongside most primary human melanoma cultures, were infected by VSV-GP and efficiently killed. Additionally, we found that VSV-GP prolonged the survival of mice in both a xenograft and a syngeneic mouse model. However, only a few mice survived with long-term tumor remission. When we analyzed the factors that might limit VSV-GP's efficacy, we found that vector-neutralizing antibodies did not play a role in this context, as even after eight subsequent immunizations and an observation time of 42 weeks, no vector-neutralizing antibodies were induced in VSV-GP immunized mice. In contrast, the type I IFN response might have contributed to the reduced efficacy of the therapy, as both of the cell lines that were used for the mouse models were able to mount a protective IFN response. Nevertheless, early treatment with VSV-GP also reduced the number and size of lung metastases in a syngeneic B16 mouse model. In summary, VSV-GP is a potent candidate for the treatment of malignant melanoma; however, factors limiting the efficacy of the virus need to be further explored.


Assuntos
Melanoma/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Cães , Humanos , Interferon Tipo I/biossíntese , Melanoma/mortalidade , Melanoma/patologia , Melanoma Experimental , Camundongos , Metástase Neoplásica , Carga Tumoral , Tropismo Viral , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA