Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Comput Vis ; 131(5): 1183-1209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37069835

RESUMO

This paper introduces a set of numerical methods for Riemannian shape analysis of 3D surfaces within the setting of invariant (elastic) second-order Sobolev metrics. More specifically, we address the computation of geodesics and geodesic distances between parametrized or unparametrized immersed surfaces represented as 3D meshes. Building on this, we develop tools for the statistical shape analysis of sets of surfaces, including methods for estimating Karcher means and performing tangent PCA on shape populations, and for computing parallel transport along paths of surfaces. Our proposed approach fundamentally relies on a relaxed variational formulation for the geodesic matching problem via the use of varifold fidelity terms, which enable us to enforce reparametrization independence when computing geodesics between unparametrized surfaces, while also yielding versatile algorithms that allow us to compare surfaces with varying sampling or mesh structures. Importantly, we demonstrate how our relaxed variational framework can be extended to tackle partially observed data. The different benefits of our numerical pipeline are illustrated over various examples, synthetic and real. Supplementary Information: The online version contains supplementary material available at 10.1007/s11263-022-01743-0.

2.
Neuroimage ; 152: 411-424, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28284800

RESUMO

The human brain can be modeled as multiple interrelated shapes (or a multishape), each for characterizing one aspect of the brain, such as the cortex and white matter pathways. Predicting the developing multishape is a very challenging task due to the contrasting nature of the developmental trajectories of the constituent shapes: smooth for the cortical surface and non-smooth for white matter tracts due to changes such as bifurcation. We recently addressed this problem and proposed an approach for predicting the multishape developmental spatiotemporal trajectories of infant brains based only on neonatal MRI data using a set of geometric, dynamic, and fiber-to-surface connectivity features. In this paper, we propose two key innovations to further improve the prediction of multishape evolution. First, for a more accurate cortical surface prediction, instead of simply relying on one neonatal atlas to guide the prediction of the multishape, we propose to use multiple neonatal atlases to build a spatially heterogeneous atlas using the multidirectional varifold representation. This individualizes the atlas by locally maximizing its similarity to the testing baseline cortical shape for each cortical region, thereby better representing the baseline testing cortical surface, which founds the multishape prediction process. Second, for temporally consistent fiber prediction, we propose to reliably estimate spatiotemporal connectivity features using low-rank tensor completion, thereby capturing the variability and richness of the temporal development of fibers. Experimental results confirm that the proposed variants significantly improve the prediction performance of our original multishape prediction framework for both cortical surfaces and fiber tracts shape at 3, 6, and 9 months of age. Our pioneering model will pave the way for learning how to predict the evolution of anatomical shapes with abnormal changes. Ultimately, devising accurate shape evolution prediction models that can help quantify and predict the severity of a brain disorder as it progresses will be of great aid in individualized treatment planning.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética , Substância Branca/anatomia & histologia , Substância Branca/crescimento & desenvolvimento , Imagem de Tensor de Difusão , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Estudos Longitudinais
3.
Neuroimage ; 135: 152-62, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27138207

RESUMO

The human cerebral cortex is marked by great complexity as well as substantial dynamic changes during early postnatal development. To obtain a fairly comprehensive picture of its age-induced and/or disorder-related cortical changes, one needs to match cortical surfaces to one another, while maximizing their anatomical alignment. Methods that geodesically shoot surfaces into one another as currents (a distribution of oriented normals) and varifolds (a distribution of non-oriented normals) provide an elegant Riemannian framework for generic surface matching and reliable statistical analysis. However, both conventional current and varifold matching methods have two key limitations. First, they only use the normals of the surface to measure its geometry and guide the warping process, which overlooks the importance of the orientations of the inherently convoluted cortical sulcal and gyral folds. Second, the 'conversion' of a surface into a current or a varifold operates at a fixed scale under which geometric surface details will be neglected, which ignores the dynamic scales of cortical foldings. To overcome these limitations and improve varifold-based cortical surface registration, we propose two different strategies. The first strategy decomposes each cortical surface into its normal and tangent varifold representations, by integrating principal curvature direction field into the varifold matching framework, thus providing rich information of the orientation of cortical folding and better characterization of the complex cortical geometry. The second strategy explores the informative cortical geometric features to perform a dynamic-scale measurement of the cortical surface that depends on the local surface topography (e.g., principal curvature), thereby we introduce the concept of a topography-based dynamic-scale varifold. We tested the proposed varifold variants for registering 12 pairs of dynamically developing cortical surfaces from 0 to 6 months of age. Both variants improved the matching accuracy in terms of closeness to the target surface and the goodness of alignment with regional anatomical boundaries, when compared with three state-of-the-art methods: (1) diffeomorphic spectral matching, (2) conventional current-based surface matching, and (3) conventional varifold-based surface matching.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Técnica de Subtração , Algoritmos , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Aumento da Imagem/métodos , Lactente , Masculino , Reconhecimento Automatizado de Padrão/métodos , Sensibilidade e Especificidade
4.
Neuroimage ; 101: 35-49, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973601

RESUMO

We propose a generic method for the statistical analysis of collections of anatomical shape complexes, namely sets of surfaces that were previously segmented and labeled in a group of subjects. The method estimates an anatomical model, the template complex, that is representative of the population under study. Its shape reflects anatomical invariants within the dataset. In addition, the method automatically places control points near the most variable parts of the template complex. Vectors attached to these points are parameters of deformations of the ambient 3D space. These deformations warp the template to each subject's complex in a way that preserves the organization of the anatomical structures. Multivariate statistical analysis is applied to these deformation parameters to test for group differences. Results of the statistical analysis are then expressed in terms of deformation patterns of the template complex, and can be visualized and interpreted. The user needs only to specify the topology of the template complex and the number of control points. The method then automatically estimates the shape of the template complex, the optimal position of control points and deformation parameters. The proposed approach is completely generic with respect to any type of application and well adapted to efficient use in clinical studies, in that it does not require point correspondence across surfaces and is robust to mesh imperfections such as holes, spikes, inconsistent orientation or irregular meshing. The approach is illustrated with a neuroimaging study of Down syndrome (DS). The results demonstrate that the complex of deep brain structures shows a statistically significant shape difference between control and DS subjects. The deformation-based modelingis able to classify subjects with very high specificity and sensitivity, thus showing important generalization capability even given a low sample size. We show that the results remain significant even if the number of control points, and hence the dimension of variables in the statistical model, are drastically reduced. The analysis may even suggest that parsimonious models have an increased statistical performance. The method has been implemented in the software Deformetrica, which is publicly available at www.deformetrica.org.


Assuntos
Encéfalo/anatomia & histologia , Interpretação Estatística de Dados , Interpretação de Imagem Assistida por Computador/métodos , Modelos Anatômicos , Neuroimagem/métodos , Encéfalo/patologia , Síndrome de Down/patologia , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-36283001

RESUMO

Advances in neuroimaging have yielded extensive variety in the scale and type of data available. Effective integration of such data promises deeper understanding of anatomy and disease-with consequences for both diagnosis and treatment. Often catered to particular datatypes or scales, current computational tools and mathematical frameworks remain inadequate for simultaneously registering these multiple modes of "images" and statistically analyzing the ensuing menagerie of data. Here, we present (1) a registration algorithm using a "scattering transform" to align high and low resolution images and (2) a varifold-based modeling framework to compute 3D spatial statistics of multiscale data. We use our methods to quantify microscopic tau pathology across macroscopic 3D regions of the medial temporal lobe to address a major challenge in the diagnosis of Alzheimer's Disease-the reliance on invasive methods to detect microscopic pathology.

6.
Med Image Anal ; 28: 1-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26619188

RESUMO

Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our method attained a higher prediction accuracy and better captured the spatiotemporal dynamic change of the highly folded cortical surface than the previous proposed prediction method.


Assuntos
Envelhecimento/patologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Feminino , Humanos , Aumento da Imagem/métodos , Lactente , Estudos Longitudinais , Masculino , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA