Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine ; 10(5): 1003-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24566276

RESUMO

Significant challenges remain in targeting drugs to diseased vasculature; most important being rapid blood flow with high shear, limited availability of stable targets, and heterogeneity and recycling of cellular markers. We developed nanoparticles (NPs) to target degraded elastic lamina, a consistent pathological feature in vascular diseases. In-vitro organ and cell culture experiments demonstrated that these NPs were not taken up by cells, but instead retained within the extracellular space; NP binding was proportional to the extent of elastic lamina damage. With three well-established rodent models of vascular diseases such as aortic aneurysm (calcium chloride mediated aortic injury in rats), atherosclerosis (fat-fed apoE-/- mice), and vascular calcification (warfarin + vitamin K injections in rats), we show precise NPs spatial targeting to degraded vascular elastic lamina while sparing healthy vasculature when NPs were delivered systemically. Nanoparticle targeting degraded elastic lamina is attractive to deliver therapeutic or imaging agents to the diseased vasculature. FROM THE CLINICAL EDITOR: This novel work focuses on nanoparticle targeting of degraded elastic lamina in a variety of diseases, including atherosclerosis, vascular calcification, and aneurysm formation, and demonstrates the feasibility to deliver therapeutic or imaging agents to the diseased vasculature.


Assuntos
Diagnóstico por Imagem/métodos , Sistemas de Liberação de Medicamentos/métodos , Ácido Láctico/química , Nanopartículas/química , Polímeros , Animais , Aneurisma Aórtico/diagnóstico , Aterosclerose/diagnóstico , Masculino , Camundongos , Polímeros/química , Ratos , Ratos Sprague-Dawley , Calcificação Vascular/diagnóstico
2.
Antioxidants (Basel) ; 10(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946889

RESUMO

Selective delivery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators to the injured vasculature at the time of vascular surgical intervention has the potential to attenuate oxidative stress and decrease vascular smooth muscle cell (VSMC) hyperproliferation and migration towards the inner vessel wall. To this end, we developed a nanoformulation of cinnamic aldehyde (CA), termed Antioxidant Response Activating nanoParticles (ARAPas), that can be readily loaded into macrophages ex vivo. The CA-ARAPas-macrophage system was used to study the effects of CA on VSMC in culture. CA was encapsulated into a pluronic micelle that was readily loaded into both murine and human macrophages. CA-ARAPas inhibits VSMC proliferation and migration, and activates Nrf2. Macrophage-mediated transfer of CA-ARAPas to VSMC is evident after 12 h, and Nrf2 activation is apparent after 24 h. This is the first report, to the best of our knowledge, of CA encapsulation in pluronic micelles for macrophage-mediated delivery studies. The results of this study highlight the feasibility of CA encapsulation and subsequent macrophage uptake for delivery of cargo into other pertinent cells, such as VSMC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA