Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 203(2): 443-464, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32989475

RESUMO

RNA viruses, in general, exhibit high mutation rates; this is mainly due to the low fidelity displayed by the RNA-dependent polymerases required for their replication that lack the proofreading machinery to correct misincorporated nucleotides and produce high mutation rates. This lack of replication fidelity, together with the fact that RNA viruses can undergo spontaneous mutations, results in genetic variants displaying different viral morphogenesis, as well as variation on their surface glycoproteins that affect viral antigenicity. This diverse viral population, routinely containing a variety of mutants, is known as a viral 'quasispecies'. The mutability of their virions allows for fast evolution of RNA viruses that develop antiviral resistance and overcome vaccines much more rapidly than DNA viruses. This also translates into the fact that pathogenic RNA viruses, that cause many diseases and deaths in humans, represent the major viral group involved in zoonotic disease transmission, and are responsible for worldwide pandemics.


Assuntos
Variação Genética , Vírus de RNA/genética , Vacinas Virais/genética , Animais , RNA Polimerases Dirigidas por DNA/genética , Humanos , Mutação , Vírus de RNA/enzimologia , Vírus de RNA/imunologia , Vacinas Virais/imunologia , Vacinas Virais/normas
2.
Immunol Invest ; 50(7): 833-856, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33941025

RESUMO

Vaccines are an essential part of a preventative healthcare strategy. However, response to vaccines may be less predictable in immunocompromised people. While outcomes for individuals with autoimmune and autoinflammatory diseases have dramatically improved with treatment using immunomodulating and biologic agents, infections have caused significant morbidity in these people today often more than due to their underlying diseases. Immune-based biologic therapies contribute to these infectious complications. This review addresses anti-viral vaccines, their effectiveness and safety in patients treated with approved biologic agents and immune targeted therapy with a focus on vaccines against influenza, human papillomavirus, hepatitis B virus and varicella zoster virus. Preliminary information regarding SARS-CoV-2 anti-viral vaccines is addressed. Additionally, we present recommendations regarding the safe use of vaccines in immunocompromised individuals with the goal to enhance awareness of the safety and efficacy of these anti-viral vaccines in these high-risk populations.


Assuntos
Antivirais/imunologia , Fatores Biológicos/imunologia , Doenças Hereditárias Autoinflamatórias/imunologia , Fatores Imunológicos/imunologia , Inflamação/imunologia , Viroses/imunologia , Vírus/imunologia , Doenças Hereditárias Autoinflamatórias/virologia , Humanos , Inflamação/virologia , Viroses/virologia
3.
Rev Med Virol ; 29(1): e2014, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408280

RESUMO

The alarming rise of morbidity and mortality caused by influenza pandemics and epidemics has drawn attention worldwide since the last few decades. This life-threatening problem necessitates the development of a safe and effective vaccine to protect against incoming pandemics. The currently available flu vaccines rely on inactivated viral particles, M2e-based vaccine, live attenuated influenza vaccine (LAIV) and virus like particle (VLP). While inactivated vaccines can only induce systemic humoral responses, LAIV and VLP vaccines stimulate both humoral and cellular immune responses. Yet, these vaccines have limited protection against newly emerging viral strains. These strains, however, can be targeted by universal vaccines consisting of conserved viral proteins such as M2e and capable of inducing cross-reactive immune response. The lack of viral genome in VLP and M2e-based vaccines addresses safety concern associated with existing attenuated vaccines. With the emergence of new recombinant viral strains each year, additional effort towards developing improved universal vaccine is warranted. Besides various types of vaccines, microRNA and exosome-based vaccines have been emerged as new types of influenza vaccines which are associated with new and effective properties. Hence, development of a new generation of vaccines could contribute to better treatment of influenza.


Assuntos
Pesquisa Biomédica/tendências , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/isolamento & purificação , Tecnologia Farmacêutica/tendências , Animais , Proteção Cruzada , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Imunidade Heteróloga , Influenza Humana/prevenção & controle , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/isolamento & purificação , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/isolamento & purificação
4.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933166

RESUMO

The glycans on enveloped viruses are synthesized by host-cell machinery. Some of these glycans on zoonotic viruses of mammalian reservoirs are recognized by human natural antibodies that may protect against such viruses. These antibodies are produced mostly against carbohydrate antigens on gastrointestinal bacteria and fortuitously, they bind to carbohydrate antigens synthesized in other mammals, neutralize and destroy viruses presenting these antigens. Two such antibodies are: anti-Gal binding to α-gal epitopes synthesized in non-primate mammals, lemurs, and New World monkeys, and anti-N-glycolyl neuraminic acid (anti-Neu5Gc) binding to N-glycolyl-neuraminic acid (Neu5Gc) synthesized in apes, Old World monkeys, and many non-primate mammals. Anti-Gal appeared in Old World primates following accidental inactivation of the α1,3galactosyltransferase gene 20-30 million years ago. Anti-Neu5Gc appeared in hominins following the inactivation of the cytidine-monophosphate-N-acetyl-neuraminic acid hydroxylase gene, which led to the loss of Neu5Gc <6 million-years-ago. It is suggested that an epidemic of a lethal virus eliminated ancestral Old World-primates synthesizing α-gal epitopes, whereas few mutated offspring lacking α-gal epitopes and producing anti-Gal survived because anti-Gal destroyed viruses presenting α-gal epitopes, following replication in parental populations. Similarly, anti-Neu5Gc protected few mutated hominins lacking Neu5Gc in lethal virus epidemics that eliminated parental hominins synthesizing Neu5Gc. Since α-gal epitopes are presented on many zoonotic viruses it is suggested that vaccines elevating anti-Gal titers may be of protective significance in areas endemic for such zoonotic viruses. This protection would be during the non-primate mammal to human virus transmission, but not in subsequent human to human transmission where the virus presents human glycans. In addition, production of viral vaccines presenting multiple α-gal epitopes increases their immunogenicity because of effective anti-Gal-mediated targeting of vaccines to antigen presenting cells for extensive uptake of the vaccine by these cells.


Assuntos
Antígenos Virais/imunologia , Glicoproteínas/imunologia , Viroses/imunologia , Animais , Reações Antígeno-Anticorpo , Evolução Molecular , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Primatas
5.
Zhonghua Yu Fang Yi Xue Za Zhi ; 54(7): 787-792, 2020 Jul 06.
Artigo em Chinês | MEDLINE | ID: mdl-32842304

RESUMO

Rotaviruses infection is one of the main causes of diarrhea among infants and children in the world, resulting in rotavirus gastroenteritis, which is very harmful and has caused a huge disease burden and no specific drug treatment. This paper reviews the rotavirus etiology, epidemiological characteristics, disease burden of rotavirus gastroenteritis and rotavirus vaccines. RV in group A is the main cause of acute gastroenteritis in infants, people at all ages are generally susceptible to RV, 3 to 24 months infants have the most severe symptoms of diarrhea, RVGE epidemic is seasonal and peaks in winter, increasing RV vaccination can reduce the incidence and mortality of rotavirus diarrhea in infants to reduce the burden of corresponding disease. This article focuses on RV vaccines currently in use and their effect on preventing RV infection, and put forward thoughts and suggestions on technical issues related to the application of RV vaccine in China. Provide support for improving the RV vaccine immunization strategy and Chinese-specific immunization strategy for eventually incorporating RV vaccine into the national child immunization program.


Assuntos
Gastroenterite/epidemiologia , Infecções por Rotavirus/epidemiologia , Rotavirus , Criança , Pré-Escolar , China/epidemiologia , Humanos , Lactente , Vacinação
6.
Am J Epidemiol ; 188(7): 1383-1388, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31062840

RESUMO

The self-controlled tree-temporal scan statistic allows detection of potential vaccine- or drug-associated adverse events without prespecifying the specific events or postexposure risk intervals of concern. It thus opens a promising new avenue for safety studies. The method has been successfully used to evaluate the safety of 2 vaccines for adolescents and young adults, but its suitability to study vaccines for older adults had not been established. The present study applied the method to assess the safety of live attenuated herpes zoster vaccination during 2011-2017 in US adults aged ≥60 years, using claims data from Truven Health MarketScan Research Databases. Counts of International Classification of Diseases diagnosis codes recorded in emergency department or hospital settings were scanned for any statistically unusual clustering within a hierarchical tree structure of diagnoses and within 42 days after vaccination. Among 1.24 million vaccinations, 4 clusters were found: cellulitis on days 1-3, nonspecific erythematous condition on days 2-4, "other complications . . ." on days 1-3, and nonspecific allergy on days 1-6. These results are consistent with local injection-site reactions and other known, generally mild, vaccine-associated adverse events and a favorable safety profile. This method might be useful for assessing the safety of other vaccines for older adults.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Vacina contra Herpes Zoster/efeitos adversos , Herpes Zoster/prevenção & controle , Segurança do Paciente , Vacinas Atenuadas/efeitos adversos , Idoso , Mineração de Dados , Feminino , Herpes Zoster/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia
7.
Zhonghua Yu Fang Yi Xue Za Zhi ; 53(3): 252-257, 2019 Mar 06.
Artigo em Chinês | MEDLINE | ID: mdl-30841662

RESUMO

Objective: To evaluate the post-marketing safety profiles of the inactivated enterovirus type 71 (EV-A71) vaccine (Vero cell) after routine inoculation. Methods: Eleven cities of Zhejiang Province, Fengtai district of Beijing, Qinnan district, two counties as Pingle and Pingguo of Guangxi Zhuang Autonomous Region, and Dongtai city of Jiangsu Province were selected as the field sites. A total of 45 239 subjects were enrolled in this study from children who seeked the vaccination of EV-A71 vaccine during the period from July, 2016 to June, 2018. Different sampling method were adopted in different sites. All vaccinated children were invited to participate in the study in Fengtai and Dongtai, however, systematic sampling method were adopted in other sites. Active surveillance was conducted and information about adverse reactions (ARs) occurred in 30 min, 3 d and 30 d following each dose of EV-A71 immunization was collected by field observation, phone-call or face-to-face interview. The incidence of ARs in different types, symptoms and grades were described. Results: In total, there were 45 239 children who received 71 243 doses EV-A71 vaccine. The overall incidence of ARs was 1.079% (769 doses), with the highest incidence of 1.182% (177/14 973) in 5-11 month group and the lowest incidence of 0.849% (18/2 119) in ≥ 36 month group among different age groups. There was a higher incidence in solicited ARs, which was 1.047% (746 doses). The incidences of grade 1 and grade 2 ARs were also higher, which were 0.404% (288 doses) and 0.554% (395 doses), respectively. No grade 4 ARs occurred. The doses of the first and the second vaccination was 40 736 and 30 507, respectively, and the incidences of ARs were 1.281% (522 doses) and 0.810% (247 doses). Also, the incidences of ARs were 0.091% (37 doses) and 0.043% (13 doses) in local, and 1.168% (476 doses) and 0.760% (232 doses) in system. The symptoms of ARs after the two doses of vaccination were basically the same. Redness at the injection site was the most common local ARs after each dose vaccination, with doses of 24 and 11, while fever was the most common systemic ARs, with doses of 362 and 190. Moreover, ARs mainly occurred in 30 min to 3 d after each dose vaccination, with incidence of 1.016% (414 doses) and 0.698% (213 doses) in the first and second dose, respectively. Conclusion: The ARs had a low incidence after vaccination in children and most were mild or moderate. EV-A71 vaccine with good safety is suitable for inoculation in a large scale.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Enterovirus/imunologia , Vigilância de Produtos Comercializados , Vacinas Virais/efeitos adversos , Animais , Criança , China/epidemiologia , Chlorocebus aethiops , Infecções por Enterovirus/prevenção & controle , Humanos , Vacinas de Produtos Inativados/efeitos adversos , Células Vero
8.
J Infect Dis ; 208(9): 1422-30, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23901078

RESUMO

BACKGROUND: Genetic association studies demonstrated a role for cytokine proteins and cytokine or cytokine receptor gene polymorphisms in smallpox vaccine-induced adaptive immunity. METHODS: We examined the association of genetic polymorphisms with cellular (interferon [IFN] γ enzyme-linked immunospot assay [ELISPOT]) immune response to smallpox vaccine in 1076 immunized individuals. RESULTS: The majority of significant associations were discovered between single-nucleotide polymorphisms/haplotypes in IL18R1 and IL18 genes, in which we previously reported an association with vaccinia virus-induced neutralizing antibody titers in this study cohort. A functional coding IL18R1 polymorphism (rs1035130/Phe251Phe; P = .01) was significantly associated with an allele dose-related increase in IFN-γ production and was also associated with vaccinia-specific neutralizing antibody titers. Significant associations were also found between IL18R1 haplotypes and variations in IFN-γ ELISPOT responses (global P < .0001). CONCLUSIONS: Our data suggest the importance of variants in the IL18R1 and IL18 genetic loci for broad-based smallpox vaccine-induced adaptive immunity.


Assuntos
Interferon gama/genética , Subunidade alfa de Receptor de Interleucina-18/genética , Interleucina-18/genética , Vacina Antivariólica/imunologia , Vacinação , Vacínia/prevenção & controle , Imunidade Adaptativa , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática , Estudos de Associação Genética , Haplótipos , Humanos , Íntrons , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Adulto Jovem
9.
Viruses ; 16(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38932228

RESUMO

Vaccines are one of the most effective medical interventions, playing a pivotal role in treating infectious diseases. Although traditional vaccines comprise killed, inactivated, or live-attenuated pathogens that have resulted in protective immune responses, the negative consequences of their administration have been well appreciated. Modern vaccines have evolved to contain purified antigenic subunits, epitopes, or antigen-encoding mRNAs, rendering them relatively safe. However, reduced humoral and cellular responses pose major challenges to these subunit vaccines. Protein nanoparticle (PNP)-based vaccines have garnered substantial interest in recent years for their ability to present a repetitive array of antigens for improving immunogenicity and enhancing protective responses. Discovery and characterisation of naturally occurring PNPs from various living organisms such as bacteria, archaea, viruses, insects, and eukaryotes, as well as computationally designed structures and approaches to link antigens to the PNPs, have paved the way for unprecedented advances in the field of vaccine technology. In this review, we focus on some of the widely used naturally occurring and optimally designed PNPs for their suitability as promising vaccine platforms for displaying native-like antigens from human viral pathogens for protective immune responses. Such platforms hold great promise in combating emerging and re-emerging infectious viral diseases and enhancing vaccine efficacy and safety.


Assuntos
Nanopartículas , Vacinas Virais , Humanos , Nanopartículas/química , Animais , Vacinas Virais/imunologia , Viroses/prevenção & controle , Viroses/imunologia , Vírus/imunologia , Vírus/genética , Antígenos Virais/imunologia , Antígenos Virais/genética , Vacinas de Subunidades Antigênicas/imunologia
10.
Viruses ; 16(4)2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38675835

RESUMO

Many protein expression systems are primarily utilised to produce a single, specific recombinant protein. In contrast, most biological processes such as virus assembly rely upon a complex of several interacting proteins rather than the activity of a sole protein. The high complexity of the baculovirus genome, coupled with a multiphase replication cycle incorporating distinct transcriptional steps, made it the ideal system to manipulate for high-level expression of a single, or co-expression of multiple, foreign proteins within a single cell. We have developed and utilised a series of recombinant baculovirus systems to unravel the sequential assembly process of a complex non-enveloped model virus, bluetongue virus (BTV). The high protein yields expressed by the baculovirus system not only facilitated structure-function analysis of each viral protein but were also advantageous to crystallography studies and supported the first atomic-level resolution of a recombinant viral protein, the major BTV capsid protein. Further, the formation of recombinant double-shelled virus-like particles (VLPs) provided insights into the structure-function relationships among the four major structural proteins of the BTV whilst also representing a potential candidate for a viral vaccine. The baculovirus multi-gene expression system facilitated the study of structurally complex viruses (both non-enveloped and enveloped viruses) and heralded a new generation of viral vaccines.


Assuntos
Baculoviridae , Proteínas Recombinantes , Baculoviridae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animais , Expressão Gênica , Vírus Bluetongue/genética , Vetores Genéticos/genética , Montagem de Vírus , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química
11.
Front Immunol ; 15: 1338492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380318

RESUMO

Modified vaccinia virus Ankara is a versatile vaccine vector, well suited for transgene delivery, with an excellent safety profile. However, certain transgenes render recombinant MVA (rMVA) genetically unstable, leading to the accumulation of mutated rMVA with impaired transgene expression. This represents a major challenge for upscaling and manufacturing of rMVA vaccines. To prevent transgene-mediated negative selection, the continuous avian cell line AGE1.CR pIX (CR pIX) was modified to suppress transgene expression during rMVA generation and amplification. This was achieved by constitutively expressing a tetracycline repressor (TetR) together with a rat-derived shRNA in engineered CR pIX PRO suppressor cells targeting an operator element (tetO) and 3' untranslated sequence motif on a chimeric poxviral promoter and the transgene mRNA, respectively. This cell line was instrumental in generating two rMVA (isolate CR19) expressing a Macaca fascicularis papillomavirus type 3 (MfPV3) E1E2E6E7 artificially-fused polyprotein following recombination-mediated integration of the coding sequences into the DelIII (CR19 M-DelIII) or TK locus (CR19 M-TK), respectively. Characterization of rMVA on parental CR pIX or engineered CR pIX PRO suppressor cells revealed enhanced replication kinetics, higher virus titers and a focus morphology equaling wild-type MVA, when transgene expression was suppressed. Serially passaging both rMVA ten times on parental CR pIX cells and tracking E1E2E6E7 expression by flow cytometry revealed a rapid loss of transgene product after only few passages. PCR analysis and next-generation sequencing demonstrated that rMVA accumulated mutations within the E1E2E6E7 open reading frame (CR19 M-TK) or deletions of the whole transgene cassette (CR19 M-DelIII). In contrast, CR pIX PRO suppressor cells preserved robust transgene expression for up to 10 passages, however, rMVAs were more stable when E1E2E6E7 was integrated into the TK as compared to the DelIII locus. In conclusion, sustained knock-down of transgene expression in CR pIX PRO suppressor cells facilitates the generation, propagation and large-scale manufacturing of rMVA with transgenes hampering viral replication.


Assuntos
Vacinas Sintéticas , Vaccinia virus , Ratos , Animais , Vaccinia virus/genética , Linfócitos T CD8-Positivos , Transgenes
12.
Clin Exp Vaccine Res ; 12(4): 265-290, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38025914

RESUMO

Rare but serious thrombotic incidents in relation to thrombocytopenia, termed vaccine-induced immune thrombotic thrombocytopenia (VITT), have been observed since the vaccine rollout, particularly among replication-defective adenoviral vector-based severe acute respiratory syndrome coronavirus 2 vaccine recipients. Herein, we comprehensively reviewed and summarized reported studies of VITT following the coronavirus disease 2019 (COVID-19) vaccination to determine its prevalence, clinical characteristics, as well as its management. A literature search up to October 1, 2021 using PubMed and SCOPUS identified a combined total of 720 articles. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guideline, after screening the titles and abstracts based on the eligibility criteria, the remaining 47 full-text articles were assessed for eligibility and 29 studies were included. Findings revealed that VITT cases are strongly related to viral vector-based vaccines, which are the AstraZeneca COVID-19 vaccine (95%) and the Janssen COVID-19 vaccine (4%), with much rarer reports involving messenger RNA-based vaccines such as the Moderna COVID-19 vaccine (0.2%) and the Pfizer COVID-19 vaccine (0.2%). The most severe manifestation of VITT is cerebral venous sinus thrombosis with 317 cases (70.4%) and the earliest primary symptom in the majority of cases is headache. Intravenous immunoglobulin and non-heparin anticoagulant are the main therapeutic options for managing immune responses and thrombosis, respectively. As there is emerging knowledge on and refinement of the published guidelines regarding VITT, this review may assist the medical communities in early VITT recognition, understanding the clinical presentations, diagnostic criteria as well as its management, offering a window of opportunity to VITT patients. Further larger sample size trials could further elucidate the link and safety profile.

13.
Parasit Vectors ; 16(1): 35, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703216

RESUMO

Parasites of the genus Leishmania are unusual unicellular microorganisms in that they are characterized by the capability to subvert in their favor the immune response of mammalian phagocytes, including dendritic cells. Thus, in overt leishmaniasis, dendritic cells and macrophages are converted into a niche for Leishmania spp. in which the parasite, rather than being inactivated and disassembled, survives and replicates. In addition, Leishmania parasites hitchhike onto phagocytic cells, exploiting them as a mode of transport to lymphoid tissues where other phagocytic cells are potentially amenable to parasite colonization. This propensity of Leishmania spp. to target dendritic cells has led some researchers to consider the possibility that the non-pathogenic, reptile-associated Leishmania tarentolae could be exploited as a vaccine platform and vehicle for the production of antigens from different viruses and for the delivery of the antigens to dendritic cells and lymph nodes. In addition, as L. tarentolae can also be regarded as a surrogate of pathogenic Leishmania parasites, this parasite of reptiles could possibly be developed into a vaccine against human and canine leishmaniases, exploiting its immunological cross-reactivity with other Leishmania species, or, after its engineering, for the expression of antigens from pathogenic species. In this article we review published studies on the use of L. tarentolae as a vaccine platform and vehicle, mainly in the areas of leishmaniases and viral infections. In addition, a short summary of available knowledge on the biology of L. tarentolae is presented, together with information on the use of this microorganism as a micro-factory to produce antigens suitable for the serodiagnosis of viral and parasitic infections.


Assuntos
Leishmania , Leishmaniose , Parasitos , Vacinas , Viroses , Animais , Cães , Humanos , Leishmaniose/prevenção & controle , Leishmaniose/parasitologia , Células Dendríticas , Mamíferos
14.
Viruses ; 15(3)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992412

RESUMO

Bovine viral vaccines contain both live or inactivated/killed formulations, but few studies have evaluated the impact of vaccinating with either live or killed antigens and re-vaccinating with the reciprocal. Commercial dairy heifers were utilized for the study and randomly assigned to three treatment groups. Treatment groups received a commercially available modified-live viral (MLV) vaccine containing BVDV and were revaccinated with a commercially available killed viral (KV) vaccine containing BVDV, another group received the same KV vaccine and was revaccinated with the same MLV vaccine, and yet another group served as negative controls and did not receive any viral vaccines. Heifers in KV/MLV had higher virus neutralizing titers (VNT) at the end of the vaccination period than heifers in MLV/KV and control groups. The frequency of IFN-γ mRNA positive CD4+, CD8+, and CD335+ populations, as well as increased mean fluorescent intensity of CD25+ cells was increased for the MLV/KV heifers as compared to KV/MLV and controls. The data from this study would suggest that differences in initial antigen presentation such as live versus killed could augment CMI and humoral responses and could be useful in determining vaccination programs for optimizing protective responses, which is critical for promoting lifetime immunity.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Vacinas Virais , Feminino , Animais , Bovinos , Vacinas de Produtos Inativados , Anticorpos Antivirais , Diarreia
15.
J Chromatogr A ; 1705: 464194, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37419021

RESUMO

Continuous multi-column chromatography (CMCC) has been successfully implemented to address biopharmaceutical biomolecule instability, to improve process efficiency, and to reduce facility footprint and capital cost. This paper explores the implementation of a continuous multi-membrane chromatography (CMMC) process, using four membrane units, for a large viral particle in just few weeks. CMMC improves the efficiency of the chromatography step by enabling higher loads with smaller membranes for multiple cycles of column use and enables steady-state continuous bioprocessing. The separation performance of CMMC was compared to a conventional batch chromatographic capture step used at full manufacturing scale. The product step yield was 80% using CMMC versus 65% in batch mode while increasing slightly the relative purity. Furthermore, the total amount of membrane area required for the CMMC approach was approximately 10% of the area needed for batch operation, while realizing similar processing times. Since CMMC uses smaller membrane sizes, it can take advantage of the high flow rates achievable for membrane chromatography that are not typically possible at larger membrane scales due to skid flow rate limitations. As such, CMMC offers the potential for more efficient and cost-effective purification trains.


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Cromatografia , Proteína Estafilocócica A/química
16.
Vaccines (Basel) ; 11(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36851159

RESUMO

DNA vaccines have inherent advantages compared to other vaccine types, including safety, rapid design and construction, ease and speed to manufacture, and thermostability. However, a major drawback of candidate DNA vaccines delivered by needle and syringe is the poor immunogenicity associated with inefficient cellular uptake of the DNA. This uptake is essential because the target vaccine antigen is produced within cells and then presented to the immune system. Multiple techniques have been employed to boost the immunogenicity and protective efficacy of DNA vaccines, including physical delivery methods, molecular and traditional adjuvants, and genetic sequence enhancements. Needle-free injection systems (NFIS) are an attractive alternative due to the induction of potent immunogenicity, enhanced protective efficacy, and elimination of needles. These advantages led to a milestone achievement in the field with the approval for Restricted Use in Emergency Situation of a DNA vaccine against COVID-19, delivered exclusively with NFIS. In this review, we discuss physical delivery methods for DNA vaccines with an emphasis on commercially available NFIS and their resulting safety, immunogenic effectiveness, and protective efficacy. As is discussed, prophylactic DNA vaccines delivered by NFIS tend to induce non-inferior immunogenicity to electroporation and enhanced responses compared to needle and syringe.

17.
Vaccine ; 41(29): 4302-4312, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37301705

RESUMO

Most seasonal influenza vaccines are produced using hemagglutinin (HA) surface antigens from inactivated virions. However, virions are thought to be a suboptimal source for the less abundant neuraminidase (NA) surface antigen, which is also protective against severe disease. Here, we demonstrate that inactivated influenza virions are compatible with two modern approaches for improving protective antibody responses against NA. Using a DBA/2J mouse model, we show that the strong infection-induced NA inhibitory (NAI) antibody responses are only achieved by high dose immunizations of inactivated virions, likely due to the low viral NA content. Based on this observation, we first produced virions with higher NA content by using reverse genetics to exchange the viral internal gene segments. Single immunizations with these inactivated virions showed enhanced NAI antibody responses and improved NA-based protection from a lethal viral challenge while also allowing for the development of natural immunity to the heterotypic challenge virus HA. Second, we combined inactivated virions with recombinant NA protein antigens. These combination vaccines increased NA-based protection following viral challenge and elicited stronger antibody responses against NA than either component alone, especially when the NAs possessed similar antigenicity. Together, these results indicate that inactivated virions are a flexible platform that can be easily combined with protein-based vaccines to improve protective antibody responses against influenza antigens.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Neuraminidase , Formação de Anticorpos , Anticorpos Antivirais , Camundongos Endogâmicos DBA , Proteínas Recombinantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza
18.
J Investig Med ; 70(6): 1429-1432, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35768140

RESUMO

As no vaccines are 100% effective at preventing illness, COVID-19 vaccine breakthrough cases are expected. We here aim to review the most recent literature on COVID-19 vaccine breakthrough infections. SARS-CoV-2 breakthrough infections are, in general, rare. Age may still be a factor in SARS-CoV-2 infections in immunized individuals.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação
19.
Saudi Med J ; 43(11): 1270-1275, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36379527

RESUMO

Heart muscle inflammations were reported following SARS-CoV-2 messenger ribonucleic acid (RNA) vaccination by the Disease Control Centers in America, and cases of these inflammations reported as adverse effects of this COVID-19 vaccine application increased 1000 times since April 2021. A male individual, 18-year-old received vaccination with mRNA-1273 vaccine, and after a while attended the Emergency Department at King Abdulaziz University Hospital, Jeddah, Saudi Arabia. Upon presentation, the patient complained of a history of chest pain, and he had a high troponin level along with new-onset electrocardiogram changes. During his stay in hospital the patient's blood circulation status remained stable, and no evidence of another infectious or immune cases was found. Although these vaccines are a must and very advantageous in fighting COVID-19 and their benefits are far beyond their risks, although it seems that there is a risk of myopericarditis cases. Under such conditions it is essential to rely on early diagnosis for control and deal with the possible cases of morbidity and mortality associated with these conditions.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Miocardite , Adolescente , Humanos , Masculino , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Inflamação , Miocardite/etiologia , Miocardite/diagnóstico , SARS-CoV-2 , Vacinação
20.
Viruses ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35746665

RESUMO

The poultry industry is the largest source of meat and eggs for human consumption worldwide. However, viral outbreaks in farmed stock are a common occurrence and a major source of concern for the industry. Mortality and morbidity resulting from an outbreak can cause significant economic losses with subsequent detrimental impacts on the global food supply chain. Mass vaccination is one of the main strategies for controlling and preventing viral infection in poultry. The development of broadly protective vaccines against avian viral diseases will alleviate selection pressure on field virus strains and simplify vaccination regimens for commercial farms with overall savings in husbandry costs. With the increasing number of emerging and re-emerging viral infectious diseases in the poultry industry, there is an urgent need to understand the strategies for broadening the protective efficacy of the vaccines against distinct viral strains. The current review provides an overview of viral vaccines and vaccination regimens available for common avian viral infections, and strategies for developing safer and more efficacious viral vaccines for poultry.


Assuntos
Doenças das Aves Domésticas , Vacinas Virais , Viroses , Animais , Galinhas , Humanos , Aves Domésticas , Vacinação/veterinária , Viroses/prevenção & controle , Viroses/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA