Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Mol Phylogenet Evol ; 183: 107776, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990305

RESUMO

Tree shape metrics can be computed fast for trees of any size, which makes them promising alternatives to intensive statistical methods and parameter-rich evolutionary models in the era of massive data availability. Previous studies have demonstrated their effectiveness in unveiling important parameters in viral evolutionary dynamics, although the impact of natural selection on the shape of tree topologies has not been thoroughly investigated. We carried out a forward-time and individual-based simulation to investigate whether tree shape metrics of several kinds could predict the selection regime employed to generate the data. To examine the impact of the genetic diversity of the founder viral population, simulations were run under two opposing starting configurations of the genetic diversity of the infecting viral population. We found that four evolutionary regimes, namely, negative, positive, and frequency-dependent selection, as well as neutral evolution, were successfully distinguished by tree topology shape metrics. Two metrics from the Laplacian spectral density profile (principal eigenvalue and peakedness) and the number of cherries were the most informative for indicating selection type. The genetic diversity of the founder population had an impact on differentiating evolutionary scenarios. Tree imbalance, which has been frequently associated with the action of natural selection on intrahost viral diversity, was also characteristic of neutrally evolving serially sampled data. Metrics calculated from empirical analysis of HIV datasets indicated that most tree topologies exhibited shapes closer to the frequency-dependent selection or neutral evolution regimes.


Assuntos
Evolução Biológica , Árvores , Filogenia , Simulação por Computador , Seleção Genética , Modelos Genéticos
2.
Phytopathology ; 113(9): 1729-1744, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37399026

RESUMO

High-throughput sequencing (HTS) and sequence mining tools revolutionized virus detection and discovery in recent years, and implementing them with classical plant virology techniques results in a powerful approach to characterize viruses. An example of a virus discovered through HTS is Solanum nigrum ilarvirus 1 (SnIV1) (Bromoviridae), which was recently reported in various solanaceous plants from France, Slovenia, Greece, and South Africa. It was likewise detected in grapevines (Vitaceae) and several Fabaceae and Rosaceae plant species. Such a diverse set of source organisms is atypical for ilarviruses, thus warranting further investigation. In this study, modern and classical virological tools were combined to accelerate the characterization of SnIV1. Through HTS-based virome surveys, mining of sequence read archive datasets, and a literature search, SnIV1 was further identified from diverse plant and non-plant sources globally. SnIV1 isolates showed relatively low variability compared with other phylogenetically related ilarviruses. Phylogenetic analyses showed a distinct basal clade of isolates from Europe, whereas the rest formed clades of mixed geographic origin. Furthermore, systemic infection of SnIV1 in Solanum villosum and its mechanical and graft transmissibility to solanaceous species were demonstrated. Near-identical SnIV1 genomes from the inoculum (S. villosum) and inoculated Nicotiana benthamiana were sequenced, thus partially fulfilling Koch's postulates. SnIV1 was shown to be seed-transmitted and potentially pollen-borne, has spherical virions, and possibly induces histopathological changes in infected N. benthamiana leaf tissues. Overall, this study provides information to better understand the diversity, global presence, and pathobiology of SnIV1; however, its possible emergence as a destructive pathogen remains uncertain. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ilarvirus , Solanum , Filogenia , Doenças das Plantas , Nicotiana
3.
Plant Dis ; 107(11): 3437-3447, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37079008

RESUMO

Sugarcane yellow leaf virus (SCYLV), the causal agent of yellow leaf, has been reported in an increasing number of sugarcane-growing locations since its first report in the 1990s in Brazil, Florida, and Hawaii. In this study, the genetic diversity of SCYLV was investigated using the genome coding sequence (5,561 to 5,612 nt) of 109 virus isolates from 19 geographical locations, including 65 new isolates from 16 geographical regions worldwide. These isolates were distributed in three major phylogenetic lineages (BRA, CUB, and REU), except for one isolate from Guatemala. Twenty-two recombination events were identified among the 109 isolates of SCYLV, thus confirming that recombination was a significant driving force in the genetic diversity and evolution of this virus. No temporal signal was found in the genomic sequence dataset, most likely because of the short temporal window of the 109 SCYLV isolates (1998 to 2020). Among 27 primers reported in the literature for the detection of the virus by RT-PCR, none matched 100% with all 109 SCYLV sequences, suggesting that the use of some primer pairs may not result in the detection of all virus isolates. Primers YLS111/YLS462, which were the first primer pair used by numerous research organizations to detect the virus by RT-PCR, failed to detect isolates belonging to the CUB lineage. In contrast, primer pair ScYLVf1/ScYLVr1 efficiently detected isolates of all three lineages. Continuous pursuit of knowledge of SCYLV genetic variability is therefore critical for effective diagnosis of yellow leaf, especially in virus-infected and mainly asymptomatic sugarcane plants.


Assuntos
Saccharum , Filogenia , Doenças das Plantas , Variação Genética
4.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714225

RESUMO

Calf diarrhoea has been a major cause of economic losses in the global dairy industry. Many factors, including multiple pathogen infections, can directly or indirectly cause calf diarrhoea. This study compared the faecal virome between 15 healthy calves and 15 calves with diarrhoea. Significantly lower diversity of viruses was found in samples from animals with diarrhoea than those in the healthy ones, and this feature may also be related to the age of the calves. Viruses belonging to the families Astroviridae and Caliciviridae that may cause diarrhoea in dairy calves have been characterized, which revealed that reads of caliciviruses and astroviruses in diarrhoea calves were much higher than those in healthy calves. Five complete genomic sequences closely related to Smacoviridae have been identified, which may participate in the regulation of the gut virus community ecology of healthy hosts together with bacteriophages. This research provides a theoretical basis for further understanding of known or potential enteric pathogens related to calf diarrhoea.


Assuntos
Doenças dos Bovinos/virologia , Bovinos/virologia , Diarreia/veterinária , Intestinos/virologia , Viroma , Animais , Caliciviridae/classificação , Caliciviridae/genética , Caliciviridae/isolamento & purificação , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Indústria de Laticínios , Diarreia/virologia , Fezes/virologia , Genoma Viral , Mamastrovirus/classificação , Mamastrovirus/genética , Mamastrovirus/isolamento & purificação , Metagenômica , Filogenia
5.
Virol J ; 18(1): 5, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407622

RESUMO

BACKGROUND: Advances in sequencing and analysis tools have facilitated discovery of many new viruses from invertebrates, including ants. Solenopsis invicta is an invasive ant that has quickly spread worldwide causing significant ecological and economic impacts. Its virome has begun to be characterized pertaining to potential use of viruses as natural enemies. Although the S. invicta virome is the best characterized among ants, most studies have been performed in its native range, with less information from invaded areas. METHODS: Using a metatranscriptome approach, we further identified and molecularly characterized virus sequences associated with S. invicta, in two introduced areas, U.S and Taiwan. The data set used here was obtained from different stages (larvae, pupa, and adults) of S. invicta life cycle. Publicly available RNA sequences from GenBank's Sequence Read Archive were downloaded and de novo assembled using CLC Genomics Workbench 20.0.1. Contigs were compared against the non-redundant protein sequences and those showing similarity to viral sequences were further analyzed. RESULTS: We characterized five putative new viruses associated with S. invicta transcriptomes. Sequence comparisons revealed extensive divergence across ORFs and genomic regions with most of them sharing less than 40% amino acid identity with those closest homologous sequences previously characterized. The first negative-sense single-stranded RNA virus genomic sequences included in the orders Bunyavirales and Mononegavirales are reported. In addition, two positive single-strand virus genome sequences and one single strand DNA virus genome sequence were also identified. While the presence of a putative tenuivirus associated with S. invicta was previously suggested to be a contamination, here we characterized and present strong evidence that Solenopsis invicta virus 14 (SINV-14) is a tenui-like virus that has a long-term association with the ant. Furthermore, based on virus sequence abundance compared to housekeeping genes, phylogenetic relationships, and completeness of viral coding sequences, our results suggest that four of five virus sequences reported, those being SINV-14, SINV-15, SINV-16 and SINV-17, may be associated to viruses actively replicating in the ant S. invicta. CONCLUSIONS: The present study expands our knowledge about viral diversity associated with S. invicta in introduced areas with potential to be used as biological control agents, which will require further biological characterization.


Assuntos
Formigas/virologia , Espécies Introduzidas , Viroma/genética , Animais , Formigas/genética , Formigas/crescimento & desenvolvimento , Biodiversidade , Vírus de DNA/classificação , Vírus de DNA/genética , Genoma Viral/genética , Estágios do Ciclo de Vida , Fases de Leitura Aberta/genética , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Taiwan , Transcriptoma , Estados Unidos
6.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541841

RESUMO

Giant viruses are complex members of the virosphere, exhibiting outstanding structural and genomic features. Among these viruses, the pandoraviruses are some of the most intriguing members, exhibiting giant particles and genomes presenting at up to 2.5 Mb, with many genes having no known function. In this work, we analyzed, by virological and microscopic methods, the replication cycle steps of three new pandoravirus isolates from samples collected in different regions of Brazil. Our data indicate that all analyzed pandoravirus isolates can deeply modify the Acanthamoeba cytoplasmic environment, recruiting mitochondria and membranes into and around the electron-lucent viral factories. We also observed that the viral factories start forming before the complete degradation of the cellular nucleus. Various patterns of pandoravirus particle morphogenesis were observed, and the assembly of the particles seemed to be started either by the apex or by the opposite side. On the basis of the counting of viral particles during the infection time course, we observed that pandoravirus particles could undergo exocytosis after their morphogenesis in a process that involved intense recruitment of membranes that wrapped the just-formed particles. The treatment of infected cells with brefeldin affected particle exocytosis in two of the three analyzed strains, indicating biological variability among isolates. Despite such particle exocytosis, the lysis of host cells also contributed to viral release. This work reinforces knowledge of and reveals important steps in the replication cycle of pandoraviruses.IMPORTANCE The emerging Pandoraviridae family is composed of some of the most complex viruses known to date. Only a few pandoravirus isolates have been described until now, and many aspects of their life cycle remain to be elucidated. A comprehensive description of the replication cycle is pivotal to a better understanding of the biology of the virus. For this report, we describe new pandoraviruses and used different methods to better characterize the steps of the replication cycle of this new group of viruses. Our results provide new information about the diversity and biology of these giant viruses.


Assuntos
Acanthamoeba castellanii/virologia , Vírus de DNA/genética , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia , Brasil , Vírus de DNA/isolamento & purificação , Genoma Viral/genética , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação
7.
Emerg Infect Dis ; 25(12): 2310-2314, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31742508

RESUMO

We screened samples from common shrews (Sorex araneus) collected in Germany during 2004-2014 and identified 3 genetically divergent rotaviruses. Virus protein 6 sequence similarities to prototype rotaviruses were low (64.5% rotavirus A, 50.1% rotavirus C [tentative species K], 48.2% rotavirus H [tentative species L]). Shrew-associated rotaviruses might have zoonotic potential.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Infecções por Rotavirus/veterinária , Rotavirus , Musaranhos/virologia , Doenças dos Animais/história , Animais , Genes Virais , Geografia Médica , Alemanha/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , História do Século XXI , Filogenia , RNA Viral
8.
Plant Dis ; 103(11): 2920-2924, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31567059

RESUMO

Papaya ringspot virus (PRSV) is the major constraint to papaya (Carica papaya) production in Bangladesh. Disease symptoms occurred in 90 to 100% of the plants surveyed. Full-length genomes of PRSV strains from severely infected papaya plants were determined using the Illumina NextSeq 500 platform, followed by Sanger DNA sequencing of viral genomes obtained by reverse-transcription PCR(RT-PCR). The genome sequences of two distinct PRSV strains, PRSV BD-1 (10,300 bp) and PRSV BD-2 (10,325 bp) were 74 and 83% identical to each other, respectively, at the nucleotide and amino acid levels. PRSV BD-1 and PRSV BD-2 were 74 to 75% and 79 to 88% identical, respectively, to other full-length PRSV sequences at the nucleotide level. Based on phylogenetic analysis, PRSV BD-2 was most closely related to PRSV-Meghalaya (MF356497) from papaya in India. PRSV BD-1 formed a branch distinct from the other PRSV sequences based on nucleotide and amino acid sequence comparisons. Comparisons of the genome sequences of these two strains with other sequenced PRSV genomes indicated two putative recombination events in PRSV BD-2. One recombinant event contained a 2,766-nucleotide fragment highly identical to PRSV-Meghalaya (MF356497). The other recombinant event contained a 5,105-nucleotide fragment highly identical to PRSV-China (KY933061). The occurrence rates of PRSV BD-1 and PRSV BD-2 in the sampled areas of Bangladesh were approximately 19 and 69%, respectively. Plants infected with both strains (11%) exhibited more severe symptoms than plants infected with either strain alone. The full-length genome sequences of these new PRSV strains and their distribution provide important information regarding the dynamics of papaya ringspot virus infections in papaya in Bangladesh.


Assuntos
Carica , Filogenia , Potyvirus , Bangladesh , Carica/virologia , China , Genoma Viral/genética , Índia , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/genética
9.
J Gen Virol ; 99(10): 1345-1356, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30156526

RESUMO

Genetic recombination in positive-strand RNA viruses is a significant evolutionary mechanism that drives the creation of viral diversity by the formation of novel chimaeric genomes. The process and its consequences, for example the generation of viruses with novel phenotypes, has historically been studied by analysis of the end products. More recently, with an appreciation that there are both replicative and non-replicative mechanisms at work, and with new approaches and techniques to analyse intermediate products, the viral and cellular factors that influence the process are becoming understood. The major influence on replicative recombination is the fidelity of viral polymerase, although RNA structures and sequences may also have an impact. In replicative recombination the viral polymerase is necessary and sufficient, although roles for other viral or cellular proteins may exist. In contrast, non-replicative recombination appears to be mediated solely by cellular components. Despite these insights, the relative importance of replicative and non-replicative mechanisms is not clear. Using single-stranded positive-sense RNA viruses as exemplars, we review the current state of understanding of the processes and consequences of recombination.


Assuntos
Evolução Molecular , Vírus de RNA/crescimento & desenvolvimento , Vírus de RNA/genética , RNA Viral/genética , Recombinação Genética , Interações Hospedeiro-Patógeno , Replicação Viral
10.
J Virol ; 91(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28659482

RESUMO

Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms for a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. Of these, 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genomes of 123 IAV isolates and found 31 H1N1, 26 H1N2, 63 H3N2, and 3 mixed IAVs. Based on the IAV hemagglutinin, seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs, although an additional viral group was identified for gene segment 3 (PA). Moreover, the codetection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs), highlighting the environment for potential IAV reassortment. Additionally, 3 out of 5 farms contained IAV isolates (n = 5) with gene segments from more than one VG, and 79% of all the IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were detected only once, while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics are important to better understand the diversity and epidemiology of swine IAVs.IMPORTANCE On a global scale, swine are one of the main reservoir species for influenza A viruses (IAVs) and play a key role in the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine IAVs on farrow-to-wean farms, where novel IAVs can emerge. In this study, we studied 5 swine farrow-to-wean farms for a year and characterized the genetic diversity of IAVs among three different pig subpopulations commonly housed on this type of farm. Using next-generation-sequencing technologies, we demonstrated the complex distribution and diversity of IAVs among the pig subpopulations studied. Our results demonstrated the dynamic evolution of IAVs within farrow-to-wean farms, which is crucial to improve health interventions to reduce the risk of transmission between pigs and from pigs to people.


Assuntos
Variação Genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Infecções por Orthomyxoviridae/veterinária , Análise de Sequência de DNA , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Animais , Fazendas , Genótipo , Vírus da Influenza A/genética , Estudos Longitudinais , Epidemiologia Molecular , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA