Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cogn Process ; 23(2): 319-327, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34962621

RESUMO

The present study examined differences in adults' spatial-scaling abilities across three perceptual conditions: (1) visual, (2) haptic, and (3) visual and haptic. Participants were instructed to encode the position of a convex target presented in a simple map without a time limit. Immediately after encoding the map, participants were presented with a referent space and asked to place a disc at the same location from memory. All spaces were designed as tactile graphics. Positions of targets varied along the horizontal dimension. The referent space was constant in size while sizes of maps were systematically varied, resulting in three scaling factor conditions: 1:4, 1:2, 1:1. Sixty adults participated in the study (M = 21.18; SD = 1.05). One-third of them was blindfolded throughout the entire experiment (haptic condition). The second group of participants was allowed to see the graphics (visual condition); the third group were instructed to see and touch the graphics (bimodal condition). An analysis of participants' absolute errors showed that participants produced larger errors in the haptic condition as opposed to the visual and bimodal conditions. There was also a significant interaction effect between scaling factor and perceptual condition. In the visual and bimodal conditions, results showed a linear increase in errors with higher scaling factors (which may suggest that adults adopted mental transformation strategies during the spatial scaling process), whereas, in the haptic condition, this relation was quadratic. Findings imply that adults' spatial-scaling performance decreases when visual information is not available.


Assuntos
Percepção Espacial , Percepção do Tato , Adulto , Interface Háptica , Tecnologia Háptica , Humanos , Tato , Percepção Visual
2.
Sci Rep ; 14(1): 11036, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744906

RESUMO

The perception of a continuous phantom in a sensory domain in the absence of an external stimulus is explained as a maladaptive compensation of aberrant predictive coding, a proposed unified theory of brain functioning. If this were true, these changes would occur not only in the domain of the phantom percept but in other sensory domains as well. We confirm this hypothesis by using tinnitus (continuous phantom sound) as a model and probe the predictive coding mechanism using the established local-global oddball paradigm in both the auditory and visual domains. We observe that tinnitus patients are sensitive to changes in predictive coding not only in the auditory but also in the visual domain. We report changes in well-established components of event-related EEG such as the mismatch negativity. Furthermore, deviations in stimulus characteristics were correlated with the subjective tinnitus distress. These results provide an empirical confirmation that aberrant perceptions are a symptom of a higher-order systemic disorder transcending the domain of the percept.


Assuntos
Percepção Auditiva , Eletroencefalografia , Zumbido , Humanos , Zumbido/fisiopatologia , Zumbido/psicologia , Masculino , Feminino , Percepção Auditiva/fisiologia , Adulto , Pessoa de Meia-Idade , Estimulação Acústica , Percepção Visual/fisiologia
3.
Int J Psychophysiol ; 158: 400-410, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33181189

RESUMO

Sensory input as well as cognitive factors can drive the modulation of blinking. Our aim was to dissociate sensory driven bottom-up from cognitive top-down influences on blinking behavior and compare these influences between the auditory and the visual domain. Using an oddball paradigm, we found a significant pre-stimulus decrease in blink probability for visual input compared to auditory input. Sensory input further led to an early post-stimulus blink increase in both modalities if a task demanded attention to the input. Only visual input caused a pronounced early increase without a task. In case of a target or the omission of a stimulus (as compared to standard input), an additional late increase in blink rate was found in the auditory and visual domain. This suggests that blink modulation must be based on the interpretation of the input, but does not need any sensory input at all to occur. Our results show a complex modulation of blinking based on top-down factors such as prediction and attention in addition to sensory-based influences. The magnitude of the modulation is mainly influenced by general attentional demands, while the latency of this modulation allows dissociating general from specific top-down influences that are independent of the sensory domain.


Assuntos
Piscadela , Humanos
4.
Int J Comput Assist Radiol Surg ; 14(6): 1049-1058, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30968353

RESUMO

PURPOSE: Face detection is a needed component for the automatic analysis and assistance of human activities during surgical procedures. Efficient face detection algorithms can indeed help to detect and identify the persons present in the room and also be used to automatically anonymize the data. However, current algorithms trained on natural images do not generalize well to the operating room (OR) images. In this work, we provide a comparison of state-of-the-art face detectors on OR data and also present an approach to train a face detector for the OR by exploiting non-annotated OR images. METHODS: We propose a comparison of six state-of-the-art face detectors on clinical data using multi-view OR faces, a dataset of OR images capturing real surgical activities. We then propose to use self-supervision, a domain adaptation method, for the task of face detection in the OR. The approach makes use of non-annotated images to fine-tune a state-of-the-art detector for the OR without using any human supervision. RESULTS: The results show that the best model, namely the tiny face detector, yields an average precision of 0.556 at intersection over union of 0.5. Our self-supervised model using non-annotated clinical data outperforms this result by 9.2%. CONCLUSION: We present the first comparison of state-of-the-art face detectors on OR images and show that results can be significantly improved by using self-supervision on non-annotated data.


Assuntos
Algoritmos , Face , Salas Cirúrgicas , Reconhecimento Facial , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA