Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Mol Cancer ; 23(1): 196, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272040

RESUMO

Colitis-associated colorectal cancer (CAC) frequently develops in patients with inflammatory bowel disease (IBD) who have been exposed to a prolonged state of chronic inflammation. The investigation of pharmacological agents and their mechanisms to prevent precancerous lesions and inhibit their progression remains a significant focus and challenge in CAC research. Previous studies have demonstrated that vitexin effectively mitigates CAC, however, its precise mechanism of action warrants further exploration. This study reveals that the absence of the Vitamin D receptor (VDR) accelerates the progression from chronic colitis to colorectal cancer. Our findings indicate that vitexin can specifically target the VDR protein, facilitating its translocation into the cell nucleus to exert transcriptional activity. Additionally, through a co-culture model of macrophages and cancer cells, we observed that vitexin promotes the polarization of macrophages towards the M1 phenotype, a process that is dependent on VDR. Furthermore, ChIP-seq analysis revealed that vitexin regulates the transcriptional activation of phenazine biosynthesis-like domain protein (PBLD) via VDR. ChIP assays and dual luciferase reporter assays were employed to identify the functional PBLD regulatory region, confirming that the VDR/PBLD pathway is critical for vitexin-mediated regulation of macrophage polarization. Finally, in a mouse model with myeloid VDR gene knockout, we found that the protective effects of vitexin were abolished in mid-stage CAC. In summary, our study establishes that vitexin targets VDR and modulates macrophage polarization through the VDR/PBLD pathway, thereby alleviating the transition from chronic colitis to colorectal cancer.


Assuntos
Apigenina , Neoplasias Colorretais , Macrófagos , Receptores de Calcitriol , Apigenina/farmacologia , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/genética , Animais , Camundongos , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Colite/tratamento farmacológico , Colite/patologia , Colite/metabolismo , Colite/induzido quimicamente , Progressão da Doença , Células RAW 264.7 , Camundongos Endogâmicos C57BL
2.
Kidney Blood Press Res ; 49(1): 753-762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39079512

RESUMO

INTRODUCTION: Vitexin is a natural flavonoid compound extracted from Vitex leaves or seeds, exhibiting various pharmacological activities including anticancer, antihypertensive, anti-inflammatory, and spasmolytic effects. However, its protective effects on hypertensive nephropathy (HN) and the underlying mechanisms remain unclear. METHODS: Spontaneous hypertension rats were fed a high-sugar and high-fat diet for 8 weeks to induce the disease HN model. From the 5th week, the rats were administered vitexin via gavage. Blood pressure was measured biweekly using the tail-cuff method. Histopathological changes were assessed using HE staining, and biochemical analyses were performed to evaluate the effects of vitexin on HN rats. The underlying mechanisms of vitexin treatment were investigated through western blotting. RESULTS: The data demonstrated that vitexin significantly lowered systolic, diastolic, and mean arterial pressures and ameliorated histopathological changes in HN rats. Biochemical analyses revealed that vitexin reduced the levels of creatinine (Cr), blood urea nitrogen (BUN), total cholesterol (TC), triglycerides (TG), total protein (TP), low-density lipoprotein cholesterol (LDL-C), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), and advanced glycation end products (AGEs), while increasing the levels of albumin (ALB) and superoxide dismutase (SOD). Western blotting results indicated that vitexin treatment decreased the expression of TNF-α, IL-6, and nuclear factor kappa-B (NF-κB), while increasing the expression of SOD. CONCLUSION: The findings of this study suggest that vitexin exerts protective effects against HN, providing pharmacological evidence for its potential use in HN treatment.


Assuntos
Apigenina , Hipertensão Renal , Animais , Apigenina/farmacologia , Apigenina/uso terapêutico , Ratos , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/patologia , Masculino , Ratos Endogâmicos SHR , Nefrite/tratamento farmacológico , Nefrite/prevenção & controle , Nefrite/patologia , Pressão Sanguínea/efeitos dos fármacos , NF-kappa B/metabolismo
3.
Mol Divers ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348084

RESUMO

Rheumatoid arthritis is a chronic autoimmune disease characterized by inflammation and joint damage, imposing a significant burden on affected individuals worldwide. Flavonoids, a class of natural compounds abundant in various plant-based foods, have shown promising anti-inflammatory and immunomodulatory effects, suggesting their potential as therapeutic agents for RA. In this study, we conducted a comprehensive investigation of identified LCMS compounds utilizing network pharmacology, computational modeling, in silico approaches, and pharmacokinetic assessment to evaluate the efficacy of flavonoids in RA treatment. The study identified 5 flavonoid structures with common targets via LCMS and Integration of network pharmacology approaches enabled a comprehensive evaluation of the pharmacological profile of flavonoids in the context of RA treatment, guiding the selection of promising candidates for further experimental validation and clinical development. The top 10 targets were AKT1, PI3KR1, CDK2, EGFR, CDK6, NOS2, FLT3, ALOX5, CCNB1, and PTPRS via PPI network. The investigation emphasized several pathways, including the AGE-RAGE signaling pathway, resistance to EGFR tyrosine kinase inhibitors, the PI3K-AKT signaling network, and the Rap 1 signaling pathway. In silico studies estimated binding affinities that ranged from - 7.0 to - 10.0 kcal/mol. Schaftoside and Vitexin showed no toxicity in computational approach and found suitable for further investigations. Overall, our study underscores the potential of flavonoids as therapeutic agents for RA and highlights the utility of integrative approaches combining network pharmacology, computational modeling, in silico methods, and pharmacokinetic assessment in drug discovery and development processes.

4.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810252

RESUMO

Vascular endothelial cells are exposed to shear stresses with disturbed vs. laminar flow patterns, which lead to proinflammatory vs. antiinflammatory phenotypes, respectively. Effective treatment against endothelial inflammation and the consequent atherogenesis requires the identification of new therapeutic molecules and the development of drugs targeting these molecules. Using Connectivity Map, we have identified vitexin, a natural flavonoid, as a compound that evokes the gene-expression changes caused by pulsatile shear, which mimics laminar flow with a clear direction, vs. oscillatory shear (OS), which mimics disturbed flow without a clear direction. Treatment with vitexin suppressed the endothelial inflammation induced by OS or tumor necrosis factor-α. Administration of vitexin to mice subjected to carotid partial ligation blocked the disturbed flow-induced endothelial inflammation and neointimal formation. In hyperlipidemic mice, treatment with vitexin ameliorated atherosclerosis. Using SuperPred, we predicted that apurinic/apyrimidinic endonuclease1 (APEX1) may directly interact with vitexin, and we experimentally verified their physical interactions. OS induced APEX1 nuclear translocation, which was inhibited by vitexin. OS promoted the binding of acetyltransferase p300 to APEX1, leading to its acetylation and nuclear translocation. Functionally, knocking down APEX1 with siRNA reversed the OS-induced proinflammatory phenotype, suggesting that APEX1 promotes inflammation by orchestrating the NF-κB pathway. Animal experiments with the partial ligation model indicated that overexpression of APEX1 negated the action of vitexin against endothelial inflammation, and that endothelial-specific deletion of APEX1 ameliorated atherogenesis. We thus propose targeting APEX1 with vitexin as a potential therapeutic strategy to alleviate atherosclerosis.


Assuntos
Apigenina/genética , Apigenina/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Células Endoteliais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Aterosclerose , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Camundongos , Fenótipo , Fosforilação , Ligação Proteica , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
5.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337691

RESUMO

Vitexin (VTX), a C-glycosylated flavone found in various medicinal herbs, is known for its antioxidant, anti-inflammatory, and neuroprotective properties. This study investigated the protective effects of VTX against orofacial dyskinesia (OD) in rats, induced by haloperidol (HPD), along with the neuroprotective mechanisms underlying these effects. OD was induced by administering HPD (1 mg/kg i.p.) to rats for 21 days, which led to an increase in the frequency of vacuous chewing movements (VCMs) and tongue protrusion (TP). VTX (10 and 30 mg/kg) was given intraperitoneally 60 min after each HPD injection during the same period. On the 21st day, following assessments of OD, the rats were sacrificed, and nitrosative and oxidative stress, antioxidant capacity, mitochondrial function, neuroinflammation, and apoptosis markers in the striatum were measured. HPD effectively induced OD, while VTX significantly reduced HPD-induced OD, decreased oxidative stress, enhanced antioxidant capacity, prevented mitochondrial dysfunction, and reduced neuroinflammatory and apoptotic markers in the striatum, and the protective effects of VTX on both behavioral and biochemical aspects of HPD-induced OD were significantly reduced when trigonelline (TGN), an inhibitor of the nuclear factor erythroid-2-related factor 2 (Nrf2)-mediated pathway, was administered. These findings suggest that VTX provides neuroprotection against HPD-induced OD, potentially through the Nrf2 pathway, indicating its potential as a therapeutic candidate for the prevention or treatment of tardive dyskinesia (TD) in clinical settings. However, further detailed research is required to confirm these preclinical findings and fully elucidate VTX's therapeutic potential in human studies.


Assuntos
Apigenina , Haloperidol , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Haloperidol/farmacologia , Haloperidol/efeitos adversos , Ratos , Apigenina/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Apoptose/efeitos dos fármacos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos
6.
J Sci Food Agric ; 104(2): 956-966, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37708397

RESUMO

BACKGROUND: Vitexin, a flavonoid in various foods and medicinal plants, has potential clinical, therapeutic and food applications due to its bioactive properties and beneficial health effects. However, its poor water solubility causes low oral bioavailability and poor absorption in the gastrointestinal tract, limiting its practical applications. Encapsulation is an efficient approach to overcome these limitations. This study demonstrates the encapsulation of vitexin into poly(ethylene glycol) methyl ether-grafted chitosan (mPEG-g-CTS)/alginate (ALG) polyelectrolyte complex nanoparticles. RESULTS: The vitexin-loaded mPEG-g-CTS/ALG nanoparticles were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy and X-ray diffraction. The vitexin-loaded mPEG-g-CTS/ALG nanoparticles had a spherical shape, 50-200 nm in diameter, and negatively charged surface (-27 to -38 mV). They possessed a loading capacity of 4-60%, encapsulation efficiency of 50-100% and antioxidant activity (30-52% 2,2-diphenyl-1-picrylhydrazyl decoloration) when their initial vitexin content was 0.02-0.64 g g-1 polymers. Successful vitexin loading into mPEG-g-CTS/ALG nanoparticles was also indirectly confirmed by the enhanced thermal stability of both polymers and the residual soybean oil used in the emulsion preparation step and delayed oxidative degradation of the residual soybean oil. Vitexin's in vitro release from the mPEG-g-CTS/ALG nanoparticles was very fast in phosphate buffer at pH 11, followed by pH 7, and very slow in acetate buffer at pH 3. The gastrointestinal digestion of vitexin increased by encapsulating into mPEG-g-CTS/ALG nanoparticles. CONCLUSIONS: Vitexin-loaded mPEG-g-CTS/ALG nanoparticles were successfully fabricated using a two-step process of oil-in-water emulsion and ionic gelation without the use of pungent odor acids and other crosslinkers. The obtained nanoparticles are suitable for oral intestinal-specific delivery systems. © 2023 Society of Chemical Industry.


Assuntos
Quitosana , Nanopartículas , Polietileno , Quitosana/química , Alginatos/química , Emulsões , Óleo de Soja , Nanopartículas/química , Polietilenoglicóis/química , Água , Tamanho da Partícula , Portadores de Fármacos/química
7.
J Sci Food Agric ; 104(6): 3381-3391, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38100295

RESUMO

BACKGROUND: Several different factors underlie the molecular mechanisms of phenolic compound-protein interactions. They include the environmental conditions. In the case of γ-conglutin, pH conditions translate directly into the adoption of two distinct oligomeric assemblies, i.e. hexameric (pH 7.5) or monomeric (pH 4.5). This paper reports research on the pH-dependent oligomerization of γ-conglutin in terms of its ability to form complexes with a model flavonoid (vitexin). RESULTS: Fluorescence-quenching thermodynamic measurements indicate that hydrogen bonds, electrostatic forces, and van der Waals interactions are the main driving forces involved in the complex formation. The interaction turned out to be a spontaneous and exothermic process. Assessment of structural composition (secondary structure changes and arrangement/dynamics of aromatic amino acids), molecular size, and the thermal stability of the different oligomeric forms showed that γ-conglutin in a monomeric state was less affected by vitexin during the interaction. CONCLUSION: The data show precisely how environmental conditions might influence phenolic compound-protein complex formation directly. This knowledge is essential for the preparation of food products containing γ-conglutin. The results can contribute to a better understanding of the detailed fate of this unique health-promoting lupin seed protein after its intake. © 2023 Society of Chemical Industry.


Assuntos
Lupinus , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Lupinus/química , Apigenina/análise , Sementes/química
8.
Mol Med ; 29(1): 147, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891461

RESUMO

BACKGROUND: Chronic kidney disease (CKD) involves a variety of pathological processes, and ferroptosis plays a vital role in CKD progression. Targeting ferroptosis is a promising strategy for the treatment of CKD. However, inhibitors of ferroptosis have not been used in the clinical treatment of CKD. Vitexin is a natural flavonoid with many biological activities and protective effects against various diseases. However, whether vitexin can prevent the progression of CKD is not known. METHODS: In vivo, the effect of vitexin on CKD was evaluated by using mouse models of unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion (UIR). Western blotting, Sirius red staining and transmission electron microscopy were used to analyze renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. In vitro, CCK8 assays and lipid peroxidation assays were performed to analyze cell viability and lipid peroxidation in human renal tubular epithelial cells (HK2 cells) induced by erastin. The activation of renal fibroblasts (NRK-49 F cells) was also analyzed. Additionally, an in-silico protein-drug docking model and coimmunoprecipitation were performed to determine the direct substrate of vitexin. RESULTS: In vivo, vitexin treatment significantly ameliorated renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. Additionally, our results showed that vitexin significantly attenuated UUO- and UIR-induced ferroptosis in renal tubular epithelial cells by upregulating glutathione peroxidase 4 (GPX4) protein levels and inhibiting lipid peroxidation in mouse kidneys. In vitro, treatment with vitexin inhibited erastin-induced ferroptosis in HK2 cells. Moreover, vitexin inhibited the expression of collagen I and α-SMA (alpha-smooth muscle actin) in NRK-49 F cells induced by the supernatant of erastin-treated HK2 cells. Mechanistically, our results suggested that vitexin could activate the NRF2/heme oxygenase-1 (HO-1) pathway by inhibiting the KEAP1- and ubiquitination-mediated degradation of NRF2, thereby increasing the expression of GPX4, and further inhibiting lipid peroxidation and ferroptosis. Additionally, knockout of NRF2 greatly inhibited the antiferroptotic effects of vitexin. CONCLUSIONS: Taken together, our results indicate that vitexin can protect against renal tubular epithelial cell ferroptosis in CKD by activating the KEAP1/NRF2/HO-1 pathway and is a promising drug to treat CKD.


Assuntos
Ferroptose , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Humanos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Inflamação/metabolismo , Células Epiteliais/metabolismo , Fibrose
9.
Neurochem Res ; 48(3): 980-995, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36435955

RESUMO

Cerebral ischemia/reperfusion involves multiple pathological processes and ferroptosis played a crucial role in the disease progression. Nevertheless, whether Vitexin could ameliorate ischemia/reperfusion injury via meditate the ferroptosis still remains unknown. In this study, we established the oxygen-glucose deprivation and reoxygenation (OGD/R) neuron cell and middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. The cell viability, cell apoptosis and reactive oxygen species (ROS) levels were tested by CCK-8 assay and Flow cytometry, respectively. Hematoxylin-eosin staining, TTC, TEM, immunofluorescence analysis and western blot were used to investigate the effects of Vitexin. The results demonstrated that Vitexin could enhanced the cell viability and decreased the cell apoptosis in OGD/R cell model. Meanwhile, incubation with Vitexin maintained the neuroprotective effects in OGD/R induced generation of lipid ROS and neuronal cell ferroptosis via regulated the expressions of Keap1/Nrf2/HO-1 relative protein levels. Moreover, treatment with Vitexin reversed brain infracted volume, the normal histopathology and mitochondrial function in MCAO/R rat model. Vitexin significantly decreased the Nrf2 transfer ration from nuclear to cytosol and regulated the expression of Keap1/Nrf2/HO-1 signaling both in vitro and in vivo. Nevertheless, the protective effects of Vitexin were blocked with the Nrf2 inhibitor ML385. Vitexin could protect the neuron cell and brain related with the Keap1/Nrf2/HO-1 signaling pathway. Vitexin was a useful candidate for stroke therapy and our research may provide an attractive therapeutic target for the treatment of stroke.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo , Apoptose , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Glucose/farmacologia
10.
Crit Rev Food Sci Nutr ; 63(16): 2749-2772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34590507

RESUMO

Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.


Assuntos
Doença de Alzheimer , Flavonas , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Flavonas/farmacologia , Flavonas/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico
11.
Eur J Nutr ; 62(8): 3433-3445, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676484

RESUMO

PURPOSE: Vitexin is one of the flavonoids in millet and has a variety of biological activities. However, the function of vitexin on colitis is not clear. This research studied the regulation of vitexin on colitis and investigated the possible mechanisms. METHODS: An in vitro fermentation model was used to evaluate the regulation of vitexin on gut microbiota of patients with inflammatory bowel disease (IBD). At the same time, an acute colitis mice model induced by dextran sodium sulfate (DSS) was used to evaluate the effects of vitexin on intestinal inflammation, barrier and gut microbiota. RESULTS: In this study, it was found that vitexin altered the structure of gut microbiota by decreasing harmful bacteria, such as Veillonella, Terrisporobacter, Klebsiella, Paeniclostridium, and increasing beneficial bacteria, such as Parabacteroides, Flavonifractor, Blautia after in vitro fermentation with the feces of colitis patients. Further, DSS-induced colitis mice models revealed that vitexin treatment significantly improved colitis symptoms, maintained intestinal barrier and down-regulated the expression of inflammatory factors, such as IL-1ß and TNF-α. In addition, vitexin also improved the diversity of gut microbiota of colitis mice by decreasing the abundance of harmful bacteria. CONCLUSION: This research suggested that vitexin could alleviate colitis by regulating gut microbiota and attenuated gut inflammation.


Assuntos
Colite , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Citocinas/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação , Bactérias/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/metabolismo
12.
Chem Biodivers ; 20(11): e202301086, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37851484

RESUMO

BACKGROUND: In Vedic context, Nirgundi (V. negundo) has been utilized for its anti-inflammatory, analgesic, and wound-healing properties. It has been employed to alleviate pain, treat skin conditions, and address various ailments. The plant's leaves, roots, and seeds have all found applications in traditional remedies. The knowledge of Nirgundi's medicinal benefits has been passed down through generations, and it continues to be a part of Ayurvedic and traditional medicine practices in India.


Assuntos
Fitoterapia , Vitex , Vitex/química , Medicina Tradicional , Índia , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise
13.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005362

RESUMO

Heat stress due to high temperatures can cause heat stroke, pyrexia, heat cramps, heart disease, and respiratory diseases, which seriously affect human health. Vitexin has been shown to alleviate heat stress; however, its mechanism of action remains unclear. Therefore, in this study, we used Caco-2 cells to establish a heat stress model and vitamin C as a positive control to investigate the regulatory effects of vitexin on heat-stress-induced apoptosis and the related mechanisms using Cell Counting Kit-8, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot. The results showed that the mRNA expressions of Hsp27, Hsp70, and Hsp90 induced by heat stress could be effectively inhibited at vitexin concentrations as low as 30 µM. After heat stress prevention and heat stress amelioration in model cells based on this concentration, intracellular reactive oxygen species (ROS) levels and the mRNA level and the protein expression of heat shock proteins (Hsp70 and Hsp90) and apoptotic proteins were reduced. In addition, compared with the heat stress amelioration group, the expression of BCL2 mRNA and its protein (anti-apoptotic protein Bcl-2) increased in the heat stress prevention group, while the expression of BAX, CYCS, CASP3, and PARP1 mRNAs and their proteins (apoptotic proteins Bax, Cytochrome C, cle-Caspase-3, and cle-PARP1) were decreased. In summary, the heat-stress-preventive effect of vitexin was slightly better than its heat-stress-ameliorating effect, and its mechanism may be through the inhibition of intracellular ROS levels and thus the modulation of the expressions of Hsp70 and Hsp90, which in turn protects against heat-stress-induced apoptosis. This study provides a theoretical basis for the prevention and amelioration of heat stress using vitexin.


Assuntos
Transtornos de Estresse por Calor , Proteínas de Choque Térmico , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células CACO-2 , Proteína X Associada a bcl-2/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Apoptose , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , RNA Mensageiro/metabolismo
14.
J Sci Food Agric ; 103(5): 2532-2543, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36478565

RESUMO

BACKGROUND: Nanoemulsions were prepared as an encapsulation and delivery system for vitexin, a poorly water-soluble antioxidant. This study evaluated how the type and concentration of the dispersed oil phase and vitexin loading impacted droplet characteristics and nanoemulsion stability. The influences of storage temperature on antioxidant activity and in vitro gastrointestinal digestion on nanoemulsion stability were also investigated. RESULTS: Nanoemulsions prepared at different dispersed oil concentrations showed diverse characteristics and stability. Highest stability against droplet aggregation and phase separation with small oil droplets (< 150 nm) was observed for nanoemulsions prepared using 300 g kg-1 medium-chain triglyceride oil. These nanoemulsions are able to entrap and deliver vitexin with high encapsulation efficiency (88-90%) with no significant effect on emulsion stability. Vitexin-loaded nanoemulsions were stable during storage when refrigerated (4 °C) and at room temperature (25 °C) for up to 45 days with no effect on their antioxidant activity. Significantly delayed lipolysis rate and decreased extent of lipid digestion were observed in vitexin-loaded nanoemulsions. CONCLUSIONS: Stable vitexin-loaded nanoemulsions were successfully produced by high-pressure homogenization using a mixture of Tween 80 and lecithin as emulsifiers. Vitexin-loaded nanoemulsions stabilized with a mixture of these two emulsifiers were effective in retaining antioxidant activity during storage and protecting vitexin from changes during gastrointestinal digestion. Our results suggested that nanoemulsions were effective vitexin delivery systems for food applications. © 2022 Society of Chemical Industry.


Assuntos
Antioxidantes , Emulsificantes , Antioxidantes/química , Emulsificantes/química , Emulsões/química , Lecitinas/química
15.
AAPS PharmSciTech ; 24(4): 82, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949351

RESUMO

Glioma, in which a malignant tumor cell occurs in neural mesenchymal cells, has a rapid progression and poor prognosis, which is still far from desirable in clinical treatments. We developed a lab-on-a-chip (LOC) device for the rapid and efficient preparation of vitexin/indocyanine green (ICG) liposomes. Vitexin could be released from liposome to kill cancer cell, which can potentially improve the glioma therapeutic effect and reduce the treatment time through synergistic photodynamic/photothermal therapies (PDT/PTT). The vitexin/ICG liposome was fabricated via LOC and its physicochemical property and release in vitro were evaluated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and live/dead staining were used to examine the enhanced antitumor effect of vitexin/ICG liposome in cooperation with PDT/PTT, while the related mechanism was explored by flow cytometry and western blot. The results were as follows: (1) The prepared vitexin/ICG liposome was smaller in size, homogenous in particle size distribution with significant low polydispersity index (PDI), and enhanced cumulative release in vitro. (2) We found that the formulated liposome presented strong cancer cell inhibition and suppression of its migration in a dose-dependent manner. (3) Further mechanistic studies showed that liposome combined with near-infrared irradiation could significantly upregulate levels of B cell lymphoma 2-associated X (Bax) protein and decrease B cell lymphoma 2 (Bcl-2) at protein levels. The vitexin/ICG liposomes prepared based on a simple LOC platform can effectively enhance the solubility of insoluble drugs, and the combined effect of PTT/PDT can effectively increase their antitumor effect, which provides a simple and valid method for the clinical translation of liposomes.


Assuntos
Glioma , Fotoquimioterapia , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Lipossomos/química , Fotoquimioterapia/métodos , Microfluídica , Glioma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Linhagem Celular Tumoral
16.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5205-5215, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114110

RESUMO

This study aims to prepare vitexin albumin nanoparticles(VT-BSA-NPs) to alleviate the low bioavailability of vitexin(VT) in vivo due to its poor water solubility. VT micro powders were prepared by the antisolvent crystallization method, and the morphology, size, and physicochemical properties of VT micro powders were studied. The results showed that the VT micro powder had a particle size of(187.13±7.15) nm, an approximate spherical morphology, and a uniform size distribution. Compared with VT, the chemical structure of VT micro powders has not changed. VT-BSA-NPs were prepared from VT micro powders by desolvation-crosslinking curing method. The preparation process was screened by single factor test and orthogonal test, and the quality evaluation of the optimal prescription particle size, PDI, Zeta potential, EE, and morphology was performed. The results showed that the average particle size of VT-BSA-NPs was(124.33±0.47) nm; the PDI was 0.184±0.012; the Zeta potential was(-48.83±2.20) mV, and the encapsulation rate was 83.43%±0.39%, all of which met the formulation-related requirements. The morphological results showed that the VT-BSA-NPs were approximately spherical in appearance, regular in shape, and without adhesion on the surface. In vitro release results showed a significantly reduced release rate of VT-BSA-NPs compared with VT, indicating a good sustained release effect. LC-MS/MS was used to establish an analytical method for in vivo analysis of VT and study the plasma pharmacokinetics of VT-BSA-NPs in rats. The results showed that the specificity of the analytical method was good, and the extraction recovery was more than 90%. Compared with VT and VT micro powders, VT-BSA-NPs could significantly increase AUC, MRT, and t_(1/2), which was beneficial to improve the bioavailability of VT.


Assuntos
Nanopartículas , Soroalbumina Bovina , Ratos , Animais , Soroalbumina Bovina/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
17.
Malays J Med Sci ; 30(2): 8-25, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37102042

RESUMO

Today, Parkinson's disease (PD) is the foremost neurological disorder all across the globe. In the quest for a novel therapeutic agent for PD with a multimodal mechanism of action and relatively better safety profile, natural flavonoids are now receiving greater attention as a potential source of neuroprotection. Vitexin have been shown to exhibit diverse biological benefits in various disease conditions, including PD. It exerts its anti-oxidative property in PD patients by either directly scavenging reactive oxygen species (ROS) or by upregulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhancing the activities of antioxidant enzymes. Also, vitexin activates the ERK1/1 and phosphatidyl inositol-3 kinase/Akt (PI3K/Akt) pro-survival signalling pathway, which upregulates the release of anti-apoptotic proteins and downregulates the expression of pro-apoptotic proteins. It could be antagonistic to protein misfolding and aggregation. Studies have shown that it can also act as an inhibitor of monoamine oxidase B (MAO-B) enzyme, thereby increasing striatal dopamine levels, and hence, restoring the behavioural deficit in experimental PD models. Such promising pharmacological potential of vitexin could be a game-changer in devising novel therapeutic strategies against PD. This review discusses the chemistry, properties, sources, bioavailability and safety profile of vitexin. The possible molecular mechanisms underlying the neuroprotective action of vitexin in the pathogenesis of PD alongside its therapeutic potential is also discussed.

18.
Arch Microbiol ; 204(6): 310, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536516

RESUMO

Glycosidic bond of C-glycosides is difficult to be broken due to its chemical stability. Screening specific microbe from microbiota is a practical way to deglycosylate these compounds. In this study, a new strain W974-1 which is capable of cleaving C-glycosidic bonds was isolated from human gut microbiota by spread plate method. It deglycosylates flavonoid 8-C-glycosides such as orientin and vitexin to their aglycones with the enzymes secreted outside the bacterial cells. This strain was identified as Enterococcus avium by 16S rDNA sequencing, physiological and biochemical characterization.


Assuntos
Microbioma Gastrointestinal , Glicosídeos , Flavonoides , Humanos , Intestinos/microbiologia
19.
Microb Cell Fact ; 21(1): 210, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242071

RESUMO

BACKGROUND: Flavonoid C-glycosides have many beneficial effects and are widely used in food and medicine. However, plants contain a limited number of flavonoid C-glycosides, and it is challenging to create these substances chemically. RESULTS: To screen more robust C-glycosyltransferases (CGTs) for the biosynthesis of flavonoid C-glycosides, one CGT enzyme from Stenoloma chusanum (ScCGT1) was characterized. Biochemical analyses revealed that ScCGT1 showed the C-glycosylation activity for phloretin, 2-hydroxynaringenin, and 2-hydroxyeriodictyol. Structure modeling and mutagenesis experiments indicated that the glycosylation of ScCGT1 may be initiated by the synergistic action of conserved residue His26 and Asp14. The P164T mutation increased C-glycosylation activity by forming a hydrogen bond with the sugar donor. Furthermore, when using phloretin as a substrate, the extracellular nothofagin production obtained from the Escherichia coli strain ScCGT1-P164T reached 38 mg/L, which was 2.3-fold higher than that of the wild-type strain. Finally, it is proved that the coupling catalysis of CjFNS I/F2H and ScCGT1-P164T could convert naringenin into vitexin and isovitexin. CONCLUSION: This is the first time that C-glycosyltransferase has been characterized from fern species and provides a candidate gene and strategy for the efficient production of bioactive C-glycosides using enzyme catalysis and metabolic engineering.


Assuntos
Gleiquênias , Glicosiltransferases , Escherichia coli/metabolismo , Gleiquênias/metabolismo , Flavonoides/metabolismo , Glicosídeos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Floretina , Açúcares
20.
J Biochem Mol Toxicol ; 36(12): e23201, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36029189

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disorder. RA is progressive and needs long-term treatment. Vitexin is a naturally-occurring flavonoid that is identified in various plant sources. Vitexin is demonstrated to produce antioxidant effects with numerous pharmacological activities. This experimental in vivo study assessed the antiarthritic and apoptotic role of a natural plant extract, vitexin, on RA. Collagen-induced arthritis (CIA) rat model Sprague Dawley males were grouped into five sets with six rats each: control, CIA, CIA + vitexin (10 mg/kg bw), CIA + Methotrexate (1 mg/kg bw), and vitexin (10 mg/kg bw) alone. The body weight, organ weight, biochemical assay, inflammatory enzymes, apoptosis, and cytokines levels were evaluated and compared among groups. Janus kinase (JAK)/signal transducer and activator of transcription (STAT)/suppressors of cytokine signaling (SOCS) levels and histopathology of ankle joints were also studied and compared. Significance was considered at a p < 0.05. Vitexin (10 mg/kg bw) significantly reduced the inflammatory enzyme markers, interleukin (IL)-1ß, IL-6, IL-17, IL-4, IL-10, tumor necrosis factor-α, interferon-γ, and iNOS levels in arthritis rats (p < 0.05). Vitexin significantly improved collagen-induced arthritic histological changes (p < 0.05). Vitexin also reduced JAK/STAT expressions associated with inflammation and significantly increased elevated SOCS levels (p < 0.05). Aberration in apoptosis, inflammatory mediators, C-reactive protein, and rheumatoid factor levels in the arthritic rats reverted to normal with vitexin. These results emphasize that vitexin possesses anti-inflammatory and apoptotic activity via the regulation of JAK/STAT/SOCS signaling in CIA in a rat model. Hence, vitexin is a promising auxiliary drug for RA treatment.


Assuntos
Artrite Experimental , Artrite Reumatoide , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Transdução de Sinais , Inflamação/tratamento farmacológico , Apoptose , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA