Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Respir Physiol Neurobiol ; 283: 103547, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32942050

RESUMO

The study investigates the effects of 6 occlusion conditions on the mechanically induced cough reflex in 15 anesthetized (pentobarbital) spontaneously breathing cats (14♂, 1♀). Esophageal pressure and integrated EMG activities of inspiratory (I) diaphragm and expiratory (E) abdominal muscles were recorded and analyzed. Occlusions: inspiratory (Io), continual I (cIo), during I and active E (I+Eo) cough phase, during I and then E phase with short releasing of airflow before each phase (I-Eo), and E occlusion (Eo) had little influence on cough number. Only continual E occlusion (cEo) reduced the number of coughs by 19 % (to 81 %, p < 0.05). Cough I esophageal pressure reached higher amplitudes under all conditions, but only Eo caused increased I diaphragm motor drive (p < 0.05). Cough E efforts (abdominal motor drive and E amplitudes of esophageal pressure) increased during Eo, decreased during I+Eo (p < 0.05), and did not change significantly under other conditions (p > 0.05). All I blocks resulted in prolonged I cough characteristics (p < 0.05) mainly cough I phase (incrementing part of the diaphragm activity). Shorter I phase occurred with cEo (p < 0.05). Cough cycle time and active E phase (from the I maximum to the end of cough E motor drive) prolonged (p < 0.05) during all occlusions (E phase duration statistically non-significantly for I+Eo). Airflow block during cough (occlusions) results in secondary changes in the cough response due to markedly altered function of cough central pattern generator and cough motor pattern produced. Cough compensatory effects during airflow resistances are more favorable compared to occlusions. Volume feedback represents significant factor of cough modulation under various pathological obstruction and/or restriction conditions of the respiratory system.


Assuntos
Obstrução das Vias Respiratórias/fisiopatologia , Tosse/fisiopatologia , Retroalimentação Fisiológica/fisiologia , Receptores Pulmonares de Alongamento/fisiologia , Mecânica Respiratória/fisiologia , Animais , Gatos , Modelos Animais de Doenças
2.
Respir Physiol Neurobiol ; 229: 43-50, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27125979

RESUMO

The effect of volume-related feedback and output airflow resistance on the cough motor pattern was studied in 17 pentobarbital anesthetized spontaneously-breathing cats. Lung inflation during tracheobronchial cough was ventilator controlled and triggered by the diaphragm electromyographic (EMG) signal. Altered lung inflations during cough resulted in modified cough motor drive and temporal features of coughing. When tidal volume was delivered (via the ventilator) there was a significant increase in the inspiratory and expiratory cough drive (esophageal pressures and EMG amplitudes), inspiratory phase duration (CTI), total cough cycle duration, and the duration of all cough related EMGs (Tactive). When the cough volume was delivered (via the ventilator) during the first half of inspiratory period (at CTI/2-early over inflation), there was a significant reduction in the inspiratory and expiratory EMG amplitude, peak inspiratory esophageal pressure, CTI, and the overlap between inspiratory and expiratory EMG activity. Additionally, there was significant increase in the interval between the maximum inspiratory and expiratory EMG activity and the active portion of the expiratory phase (CTE1). Control inflations coughs and control coughs with additional expiratory resistance had increased maximum expiratory esophageal pressure and prolonged CTE1, the duration of cough abdominal activity, and Tactive. There was no significant difference in control coughing and/or control coughing when sham ventilation was employed. In conclusion, modified lung inflations during coughing and/or additional expiratory airflow resistance altered the spatio-temporal features of cough motor pattern via the volume related feedback mechanism similar to that in breathing.


Assuntos
Tosse/fisiopatologia , Pulmão/fisiopatologia , Respiração , Anestesia , Animais , Gatos , Eletromiografia , Esôfago/fisiopatologia , Feminino , Masculino , Modelos Animais , Movimento/fisiologia , Pressão , Respiração Artificial , Volume de Ventilação Pulmonar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA