RESUMO
A metagenomic fosmid expression library established from environmental DNA (eDNA) from the shallow hot vent sediment sample collected from the Levante Bay, Vulcano Island (Aeolian archipelago) was established in Escherichia coli. Using activity-based screening assays, we have assessed 9600 fosmid clones corresponding to approximately 350 Mbp of the cloned eDNA, for the lipases/esterases/lactamases, haloalkane and haloacid dehalogenases, and glycoside hydrolases. Thirty-four positive fosmid clones were selected from the total of 120 positive hits and sequenced to yield ca. 1360 kbp of high-quality assemblies. Fosmid inserts were attributed to the members of ten bacterial phyla, including Proteobacteria, Bacteroidetes, Acidobateria, Firmicutes, Verrucomicrobia, Chloroflexi, Spirochaetes, Thermotogae, Armatimonadetes, and Planctomycetes. Of ca. 200 proteins with high biotechnological potential identified therein, we have characterized in detail three distinct α/ß-hydrolases (LIPESV12_9, LIPESV12_24, LIPESV12_26) and one new α-arabinopyranosidase (GLV12_5). All LIPESV12 enzymes revealed distinct substrate specificities tested against 43 structurally diverse esters and 4 p-nitrophenol carboxyl esters. Of 16 different glycosides tested, the GLV12_5 hydrolysed only p-nitrophenol-α-(L)-arabinopyranose with a high specific activity of about 2.7 kU/mg protein. Most of the α/ß-hydrolases were thermophilic and revealed a high tolerance to, and high activities in the presence of, numerous heavy metal ions. Among them, the LIPESV12_24 was the best temperature-adapted, retaining its activity after 40 min of incubation at 90 °C. Furthermore, enzymes were active in organic solvents (e.g., >30% methanol). Both LIPESV12_24 and LIPESV12_26 had the GXSXG pentapeptides and the catalytic triads Ser-Asp-His typical to the representatives of carboxylesterases of EC 3.1.1.1.
Assuntos
Variação Genética , Sedimentos Geológicos/microbiologia , Hidrolases/classificação , Hidrolases/metabolismo , Fontes Hidrotermais , Metagenoma , Escherichia coli/genética , Biblioteca Gênica , Testes Genéticos , Hidrolases/genética , Ilhas , Itália , Especificidade por SubstratoRESUMO
Shallow water hydrothermal vents represent highly dynamic environments where strong geochemical gradients can shape microbial communities. Recently, these systems are being widely used for investigating the effects of ocean acidification on biota as vent emissions can release high CO2 concentrations causing local pH reduction. However, other gas species, as well as trace elements and metals, are often released in association with CO2 and can potentially act as confounding factors. In this study, we evaluated the composition, diversity and inferred functional profiles of microbial biofilms in Levante Bay (Vulcano Island, Italy, Mediterranean Sea), a well-studied shallow-water hydrothermal vent system. We analyzed 16S rRNA transcripts from biofilms exposed to different intensity of hydrothermal activity, following a redox and pH gradient across the bay. We found that elevated CO2 concentrations causing low pH can affect the response of bacterial groups and taxa by either increasing or decreasing their relative abundance. H2S proved to be a highly selective factor shaping the composition and affecting the diversity of the community by selecting for sulfide-dependent, chemolithoautotrophic bacteria. The analysis of the 16S rRNA transcripts, along with the inferred functional profile of the communities, revealed a strong influence of H2S in the southern portion of the study area, and temporal succession affected the inferred abundance of genes for key metabolic pathways. Our results revealed that the composition of the microbial assemblages vary at very small spatial scales, mirroring the highly variable geochemical signature of vent emissions and cautioning for the use of these environments as models to investigate the effects of ocean acidification on microbial diversity.
RESUMO
Risk assessments in volcanic contexts are complicated by the multi-hazard nature of both unrest and eruption phases, which frequently occur over a wide range of spatial and temporal scales. As an attempt to capture the multi-dimensional and dynamic nature of volcanic risk, we developed an integrAteD VolcanIc risk asSEssment (ADVISE) model that focuses on two temporal dimensions that authorities have to address in a volcanic context: short-term emergency management and long-term risk management. The output of risk assessment in the ADVISE model is expressed in terms of potential physical, functional, and systemic damage, determined by combining the available information on hazard, exposed systems and vulnerability. The ADVISE model permits qualitative, semi-quantitative and quantitative risk assessment depending on the final objective and on the available information. The proposed approach has evolved over a decade of study on the volcanic island of Vulcano (Italy), where recent signs of unrest combined with uncontrolled urban development and significant seasonal variations of exposed population result in highly dynamic volcanic risk. For the sake of illustration of all the steps of the ADVISE model, we focus here on the risk assessment of the transport system in relation to the tephra fallout associated with a long-lasting Vulcanian cycle. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13617-021-00108-5.