Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 34(6): e4493, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33624305

RESUMO

The aim of this work was to improve the SNR efficiency of zero echo time (ZTE) MRI pulse sequences for faster imaging of short-T2 components at large dead-time gaps. ZTE MRI with hybrid filling (HYFI) is a strategy for retrieving inner k-space data missed during the dead-time gaps arising from radio-frequency excitation and switching in ZTE imaging. It performs hybrid filling of the inner k-space with a small single-point-imaging core surrounded by a stack of shells acquired on radial readouts in an onion-like fashion. The exposition of this concept is followed by translation into guidelines for parameter choice and implementation details. The imaging properties and performance of HYFI are studied in simulations as well as phantom, in vitro and in vivo imaging, with an emphasis on comparison with the pointwise encoding time reduction with radial acquisition (PETRA) technique. Simulations predict higher SNR efficiency for HYFI compared with PETRA at preserved image quality, with the advantage increasing with the size of the k-space gap. These results are confirmed by imaging experiments with gap sizes of 25 to 50 Nyquist dwells, in which scan times for similar image quality could be reduced by 25% to 60%. The HYFI technique provides both high SNR efficiency and image quality, thus outperforming previously known ZTE-based pulse sequences, in particular for large k-space gaps. Promising applications include direct imaging of ultrashort-T2 components, such as the myelin bilayer or collagen, T2 mapping of ultrafast relaxing signals, and ZTE imaging with reduced chemical shift artifacts.


Assuntos
Imagem Ecoplanar , Algoritmos , Animais , Osso e Ossos/diagnóstico por imagem , Bovinos , Simulação por Computador , Humanos , Joelho/diagnóstico por imagem , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Fatores de Tempo
2.
Magn Reson Med ; 79(4): 2036-2045, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28856717

RESUMO

PURPOSE: MRI of tissues with short coherence lifetimes T2 or T2* can be performed efficiently using zero echo time (ZTE) techniques such as algebraic ZTE, pointwise encoding time reduction with radial acquisition (PETRA), and water- and fat-suppressed proton projection MRI (WASPI). They share the principal challenge of recovering data in central k-space missed due to an initial radiofrequency dead time. The purpose of this study was to compare the three techniques directly, with a particular focus on their behavior in the presence of ultra-short-lived spins. METHODS: The most direct comparison was enabled by aligning acquisition and reconstruction strategies of the three techniques. Image quality and short- T2* performance were investigated using point spread functions, 3D simulations, and imaging of phantom and bone samples with short (<1 ms) and ultra-short (<100 µs) T2*. RESULTS: Algebraic ZTE offers favorable properties but is limited to k-space gaps up to approximately three Nyquist dwells. At larger gaps, PETRA enables robust imaging with little compromise in image quality, whereas WASPI may be prone to artifacts from ultra-short T2* species. CONCLUSION: For small k-space gaps (<4 dwells) and T2* much larger than the dead time, all techniques enable artifact-free short- T2* MRI. However, if these requirements are not fulfilled careful consideration is needed and PETRA will generally achieve better image quality. Magn Reson Med 79:2036-2045, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Animais , Artefatos , Osso e Ossos/diagnóstico por imagem , Bovinos , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Modelos Teóricos , Imagens de Fantasmas , Polimetil Metacrilato/química , Prótons , Ondas de Rádio , Tíbia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA