RESUMO
BACKGROUND: Panax ginseng is a well-known medicinal plant worldwide. As an herbal medicine, ginseng is also known for its long lifecycle, which can reach several decades. WRKY proteins play regulatory roles in many aspects of biological processes in plants, such as responses to biotic or abiotic stress, plant development, and adaptation to environmental challenges. Genome-wide analyses of WRKY genes in P. ginseng have not been reported. RESULTS: In this study, 137 PgWRKY genes were identified from the ginseng genome. Phylogenetic analysis showed that the PgWRKYs could be clustered into three primary groups and five subgroups. Most of the PgWRKY gene promoters contained several kinds of hormone- and stress-related cis-regulatory elements. The expression patterns of PgWRKY genes in 14 different tissues were analyzed based on the available public RNA-seq data. The responses of the PgWRKY genes to heat, cold, salt and drought treatment were also investigated. Most of the PgWRKY genes were expressed differently after heat treatment, and expression trends changed significantly under drought and cold treatment but only slightly under salt treatment. The coexpression analysis of PgWRKY genes with the ginsenoside biosynthesis pathway genes identified 11 PgWRKYs that may have a potential regulatory role in the biosynthesis process of ginsenoside. CONCLUSIONS: This work provides insights into the evolution, modulation and distribution of the WRKY gene family in ginseng and extends our knowledge of the molecular basis along with modulatory mechanisms of WRKY transcription factors in ginsenoside biosynthesis.
Assuntos
Panax , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Panax/genética , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Pigeonpea (Cajanus cajan L.), a protein-rich legume, is a major food component of the daily diet for residents in semi-arid tropical regions of the word. Pigeonpea is also known for its high level of tolerance against biotic and abiotic stresses. In this regard, understanding the genes involved in stress tolerance has great importance. In the present study, identification, and characterization of WRKY, a large transcription factor gene family involved in numerous biological processes like seed germination, metabolism, plant growth, biotic and abiotic stress responses was performed in pigeonpea. A total of 94 WRKY genes identified in the pigeonpea genome were extensively characterized for gene-structures, localizations, phylogenetic distribution, conserved motif organizations, and functional annotation. Phylogenetic analysis revealed three major groups (I, II, and III) of pigeonpea WRKY genes. Subsequently, expression profiling of 94 CcWRKY genes across different tissues like root, nodule, stem, petiole, petal, sepal, shoot apical meristem (SAM), mature pod, and mature seed retrieved from the available RNAseq data identified tissue-specific WRKY genes with preferential expression in the vegetative and reproductive stages. Gene co-expression networks identified four WRKY genes at the center of maximum interaction which may play a key role in the entire WRKY regulations. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) expression analysis of WRKY genes in root and leaf tissue samples from plants under drought and salinity stress identified differentially expressed WRKY genes. The study will be helpful to understand the evolution, regulation, and distribution of the WRKY gene family, and additional exploration for the development of stress tolerance cultivars in pigeonpea and other legumes crops.
RESUMO
The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js.
Assuntos
Cicer/genética , Genes de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Cicer/efeitos dos fármacos , Cicer/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Ligação Proteica , Domínios Proteicos , Ácido Salicílico/farmacologia , Alinhamento de Sequência , Estresse Fisiológico , Fatores de Transcrição/metabolismoRESUMO
SOAR1 is a cytosol-nucleus dual-localized pentatricopeptide repeat (PPR) protein, which we indentified recently as a crucial regulator in the CHLH/ABAR (Mg-chelatase H subunit /putative ABA receptor)-mediated signaling pathway, acting downstream of CHLH/ABAR and upstream of a nuclear ABA-responsive bZIP transcription factor ABI5. Downregulation and upregulation of SOAR1 expression alter dramatically both ABA sensitivity and expression of a subset of key, nuclear ABA-responsive genes, suggesting that SOAR1 is a hub for ABA signaling to the nucleus, and CHLH/ABAR mediates a central signaling pathway to regulate downstream gene expression through SOAR1.