RESUMO
Climate oscillations ranging from years to decades drive precipitation variability in many river basins globally. As a result, many regions will require new water infrastructure investments to maintain reliable water supply. However, current adaptation approaches focus on long-term trends, preparing for average climate conditions at mid- or end-of-century. The impact of climate oscillations, which bring prolonged and variable but temporary dry periods, on water supply augmentation needs is unknown. Current approaches for theory development in nature-society systems are limited in their ability to realistically capture the impacts of climate oscillations on water supply. Here, we develop an approach to build middle-range theory on how common climate oscillations affect low-cost, reliable water supply augmentation strategies. We extract contrasting climate oscillation patterns across sub-Saharan Africa and study their impacts on a generic water supply system. Our approach integrates climate model projections, nonstationary signal processing, stochastic weather generation, and reinforcement learning-based advances in stochastic dynamic control. We find that longer climate oscillations often require greater water supply augmentation capacity but benefit more from dynamic approaches. Therefore, in settings with the adaptive capacity to revisit planning decisions frequently, longer climate oscillations do not require greater capacity. By building theory on the relationship between climate oscillations and least-cost reliable water supply augmentation, our findings can help planners target scarce resources and guide water technology and policy innovation. This approach can be used to support climate adaptation planning across large spatial scales in sectors impacted by climate variability.
RESUMO
We performed chlorine inactivation experiments for Elizabethkingia anophelis and E. meningoseptica bacterial strains from clinical and environmental sources. Free chlorine concentration × contact time values <0.04 mg·min/L achieved 99.9% inactivation of Elizabethkingia species, indicating chlorine susceptibility. Measures to control biofilm producing pathogens in plumbing are needed to prevent Elizabethkingia bacterial infections.
Assuntos
Cloro , Desinfetantes , Flavobacteriaceae , Microbiologia da Água , Cloro/farmacologia , Flavobacteriaceae/efeitos dos fármacos , Desinfetantes/farmacologia , Humanos , Infecções por Flavobacteriaceae/microbiologia , Biofilmes/efeitos dos fármacosRESUMO
Hydrogel as a solar evaporator shows great potential in freshwater production. However, hydrogels often lead to an imbalance between solar energy input and water supply management due to their excessively high saturated water content. Thus, achieving a stable water-energy-balance in hydrogel evaporators remains challenging. Here, by tortuosity engineering designed water transport channels, a seamless high-tortuosity/low-tortuosity/high-tortuosity structured hydrogel (SHLH structure hydrogel) evaporator is developed, which enables the hydrogel with customized water transport rate, leading to the controlled water supply at the evaporator interface. An excellent equilibrium between the photothermal conversion and water supply is established, and the maximum utilization of solar energy is realized, thereby achieving an excellent evaporation rate of 3.64 kg m-2 h-1 under one solar illumination. This tortuosity engineering controlled SHLH structured evaporator provides a novel strategy to attain water-energy-balance and expands new approaches for constructing hydrogel-based evaporators with tailored water transportation capacity.
RESUMO
Many recent studies have examined the impact of predicted changes in temperature and precipitation patterns on infectious diseases under different greenhouse gas emissions scenarios. But these emissions scenarios symbolize more than altered temperature and precipitation regimes; they also represent differing levels of change in energy, transportation, and food production at a global scale to reduce the effects of climate change. The ways humans respond to climate change, either through adaptation or mitigation, have underappreciated, yet hugely impactful effects on infectious disease transmission, often in complex and sometimes nonintuitive ways. Thus, in addition to investigating the direct effects of climate changes on infectious diseases, it is critical to consider how human preventative measures and adaptations to climate change will alter the environments and hosts that support pathogens. Here, we consider the ways that human responses to climate change will likely impact disease risk in both positive and negative ways. We evaluate the evidence for these impacts based on the available data, and identify research directions needed to address climate change while minimizing externalities associated with infectious disease, especially for vulnerable communities. We identify several different human adaptations to climate change that are likely to affect infectious disease risk independently of the effects of climate change itself. We categorize these changes into adaptation strategies to secure access to water, food, and shelter, and mitigation strategies to decrease greenhouse gas emissions. We recognize that adaptation strategies are more likely to have infectious disease consequences for under-resourced communities, and call attention to the need for socio-ecological studies to connect human behavioral responses to climate change and their impacts on infectious disease. Understanding these effects is crucial as climate change intensifies and the global community builds momentum to slow these changes and reduce their impacts on human health, economic productivity, and political stability.
Assuntos
Mudança Climática , Doenças Transmissíveis , Humanos , Doenças Transmissíveis/transmissão , Adaptação FisiológicaRESUMO
Water supply interruptions contribute to household water insecurity. Unpredictable interruptions may particularly exacerbate water insecurity, as uncertainty limits households' ability to optimize water collection and storage or to modify other coping behaviors. This study used regression models of survey data from 2873 households across 10 sites in 9 middle-income countries to assess whether water supply interruptions and the predictability of interruptions were related to composite indicators of stressful behaviors and emotional distress. More frequent water service interruptions were associated with more frequent emotional distress (ß = 0.49, SE = 0.05, P < 0.001) and stressful behaviors (ß = 0.39, SE = 0.06, P < 0.001). Among households that experienced interruptions, predictability mitigated these respective relationships by approximately 25 and 50%. Where the provision of continuous water supplies is challenged by climate change, population growth, and poor management, water service providers may be able to mitigate some psychosocial consequences of intermittency through scheduled intermittency and communication about water supply interruptions. Service providers unable to supply continuous water should optimize intermittent water delivery to reduce negative impacts on users, and global monitoring regimes should account for intermittency and predictability in post-2030 water service metrics to better reflect household water insecurity experiences.
Assuntos
Abastecimento de Água , Humanos , Emoções , Características da Família , Insegurança HídricaRESUMO
In California, recent Bay-Delta Plan legislation attempts to balance water supply and ecosystem protection by requiring 40% of the flow to remain in-stream in the Tuolumne River from February through June. Serious questions remain about what this means for the Bay Area water supply, especially during drought. Our work develops a new approach to analyze how in-stream flow policy coupled with climate change could impact regional water supply over the coming decades. Results show that the new in-stream flow demand would exceed urban water deliveries in a typical year. In wet years, water supply performance is minimally impacted, but in drought, the policy can lead to less water in storage, delayed reservoir recovery, and increased time at critically low storage. Storage impact exceeding 50â¯000 acre-feet (60 million m3) is anticipated with at least 18% frequency, demonstrating that, climate uncertainty notwithstanding, this impact must be planned for and managed to ensure a reliable future water supply.
Assuntos
Secas , Ecossistema , Abastecimento de Água , Rios , ÁguaRESUMO
In a recent monitoring study of Minnesota's public supply wells, Cryptosporidium was commonly detected with 40% of the wells having at least one detection. Risk factors for Cryptosporidium occurrence in drinking water supply wells, beyond surface water influence, remain poorly understood. To address this gap, physical and chemical factors were assessed as potential predictors of Cryptosporidium occurrence in 135 public supply wells in Minnesota. Univariable analysis, regression techniques, and classification trees were used to analyze the data. Many variables were identified as significant risk factors in univariable analysis and several remained significant throughout the succeeding analysis techniques. These factors fell into general categories of well use and construction, aquifer characteristics, and connectedness to the land surface, well capture zones, and land use therein, existence of potential contaminant sources within 200-feet of the well, and variability in the chemical and isotopic parameters measured during the study. These risk categories, and the specific variables and threshold values we have identified, can help guide future research on factors influencing Cryptosporidium contamination of wells and can be used by environmental health programs to develop risk-based sampling plans and design interventions that reduce associated health risks.
Assuntos
Criptosporidiose , Cryptosporidium , Água Subterrânea , Poluentes Químicos da Água , Humanos , Criptosporidiose/epidemiologia , Minnesota , Monitoramento Ambiental/métodos , Abastecimento de Água , Poços de Água , Fatores de Risco , Poluentes Químicos da Água/análiseRESUMO
The concept of digital twins is one of the fundamental pillars of Industry 4.0. Digital twin allows the realization of a virtual model of a real system, enhancing the relevant performance (e.g., in terms of production rate, risk prevention, energy saving, and maintenance operation). Current literature presents many contributions pointing out the advantages that may be achieved by the definition of a digital twin of a water supply system. The Reference Architecture Model for Industry 4.0 introduces the concept of the Asset Administration Shell for the digital representation of components within the Industry 4.0 ecosystem. Several proposals are currently available in the literature considering the Asset Administration Shell for the realization of a digital twin of real systems. To the best of the authors' knowledge, at the moment, the adoption of Asset Administration Shell for the digital representation of a water supply system is not present in the current literature. For this reason, the aim of this paper is to present a methodological approach for developing a digital twin of a water supply system using the Asset Administration Shell metamodel. The paper will describe the approach proposed by the author and the relevant model based on Asset Administration Shell, pointing out that its implementation is freely available on the GitHub platform.
RESUMO
In order to enhance the accuracy and adaptability of urban water supply pipeline leak localization, based on the Northern Goshawk Optimization, a novel joint denoising method is proposed in this paper to reduce noise in negative pressure wave signals caused by leaks. Firstly, the Northern Goshawk Optimization optimizes the decomposition levels and penalty factors of Variational Mode Decomposition, and obtains their optimal combination. Subsequently, the optimized parameters are used to decompose the pressure signals into modal components, and the effective components and noise components are distinguished according to the correlation coefficients. Then, an optimized wavelet thresholding method is applied to the selected effective components for secondary denoising. Finally, the signal components that have been denoised twice are reconstructed with the effective signal components, and the denoised negative pressure wave signals are obtained. Simulation experiments demonstrate that compared to wavelet transforms and Empirical Mode Decomposition, our method achieves the highest signal-to-noise ratio improvement of 12.23 dB and normalized cross correlation of 0.991. It effectively preserves useful leak information in the signal while suppressing noise, laying a solid foundation for improving leak localization accuracy. After several leak simulation tests on the leakage simulation test platform, the test results verify the effectiveness of the proposed method. The minimum relative error of the leakage localization is 0.29%, and an average relative error is 1.64%, achieving accurate leakage localization.
RESUMO
The South-to-North Water Diversion Project in China is an extensive inter-basin water transfer project, for which ensuring the safe operation and maintenance of infrastructure poses a fundamental challenge. In this context, structural health monitoring is crucial for the safe and efficient operation of hydraulic infrastructure. Currently, most health monitoring systems for hydraulic infrastructure rely on commercial software or algorithms that only run on desktop computers. This study developed for the first time a lightweight convolutional neural network (CNN) model specifically for early detection of structural damage in water supply canals and deployed it as a tiny machine learning (TinyML) application on a low-power microcontroller unit (MCU). The model uses damage images of the supply canals that we collected as input and the damage types as output. With data augmentation techniques to enhance the training dataset, the deployed model is only 7.57 KB in size and demonstrates an accuracy of 94.17 ± 1.67% and a precision of 94.47 ± 1.46%, outperforming other commonly used CNN models in terms of performance and energy efficiency. Moreover, each inference consumes only 5610.18 µJ of energy, allowing a standard 225 mAh button cell to run continuously for nearly 11 years and perform approximately 4,945,055 inferences. This research not only confirms the feasibility of deploying real-time supply canal surface condition monitoring on low-power, resource-constrained devices but also provides practical technical solutions for improving infrastructure security.
RESUMO
One of the methods of increasing the availability of drinking water is to reduce water losses in existing water supply systems (WSS). The need to manage water losses in WSS is highlighted in the new Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. It was indicated that the main cause of water losses is underinvestment in the maintenance and renovation of network infrastructure. The new legal provisions require a risk assessment to be carried out in the water supply system, taking into account the risk of leaks. The paper presents the concept of estimating the risk of water losses in the water supply network using the three-parameter risk assessment method and risk maps. The framework of the water balance proposed by International Water Association (IWA) were also presented, including the Infrastructure Leakage Index (ILI) for assessment of the water supply system Leakage Performance Category (LPC). The analysis was carried out for a water supply system used by 200,000 inhabitants. The LPC of the system was determined based on the ILI index. Then the water supply network pipes that could potentially be a source of leaks were identified. The analysis of the risk of water losses for the examined pipes allowed to determine which pipes should be first chosen to reduce the risk of water losses, i.e. active search for leaks.
Assuntos
Abastecimento de Água , Medição de Risco , Água Potável , Humanos , Qualidade da ÁguaRESUMO
Dissolved organic matter (DOM) is important in determining the drinking water treatment and the supplied water quality. However, a comprehensive DOM study for the whole water supply system is lacking and the potential effects of secondary water supply are largely unknown. This was studied using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). Four fluorescent components were identified, including humic-like C1-C2, tryptophan-like C3, and tyrosine-like C4. In the drinking water treatment plants, the advanced treatment using ozone and biological activated carbon (O3-BAC) was more effective in removing DOC than the conventional process, with the removals of C1 and C3 improved by 17.7%-25.1% and 19.2%-27.0%. The absorption coefficient and C1-C4 correlated significantly with DOC in water treatments, suggesting that absorption and fluorescence could effectively track the changes in bulk DOM. DOM generally remained stable in each drinking water distribution system, suggesting the importance of the treated water quality in determining that of the corresponding network. The optical indices changed notably between distribution networks of different treatment plants, which enabled the identification of changing water sources. A comparison of DOM in the direct and secondary water supplies suggested limited impacts of secondary water supply, although the changes in organic carbon and absorption indices were detected in some locations. These results have implications for better understanding the changes of DOM in the whole water supply system to help ensure the supplied water quality.
Assuntos
Abastecimento de Água , Qualidade da Água , Purificação da Água/métodos , Substâncias Húmicas/análise , Água Potável/química , Água Potável/análise , Carbono/análiseRESUMO
Small water supply systems (SWSSs) are often more vulnerable to waterborne disease outbreaks. In Japan, many SWSSs operate without regulation under the Waterworks Law, yet there is limited investigation into microbial contamination and the associated health risks. In this study, the microbiological water quality of four SWSSs that utilize mountain streams as water sources and do not install water treatment facilities were monitored for over 2 years. In investigated SWSSs, the mean heterotrophic plate counts were below 350 CFU/mL, and the total bacterial loads (16S rDNA concentration) ranged from 4.71 to 5.35 log10 copies/mL. The results also showed the consistent presence of fecal indicator bacteria (FIB), i.e., Escherichia coli and Clostridium perfringens, suggesting the potential of fecal pollution. E. coli was then utilized as an indicator to assess the health risk posed by E. coli O157:H7 and Campylobacter jejuni. The results indicated that the estimated mean annual risk of infection and disability-adjusted life years (DALYs) exceeded acceptable levels in all SWSSs for the two reference pathogens. To ensure microbial water safety, implementing appropriate water treatment facilities with an estimated mean required reduction of 5-6 log10 was necessary. This study highlighted the potential microbial contamination and health risk level in SWSSs that utilize mountain streams as water sources, even though the water sources were almost not affected by human activities. Furthermore, this study would also be helpful in supporting risk-based water management to ensure a safe water supply in SWSSs.
Assuntos
Monitoramento Ambiental , Microbiologia da Água , Qualidade da Água , Abastecimento de Água , Japão , Monitoramento Ambiental/métodos , Gestão de Riscos/métodos , Clostridium perfringens/isolamento & purificação , Escherichia coli/isolamento & purificação , Campylobacter jejuni/isolamento & purificaçãoRESUMO
Decentralized water systems (DWS) distribute water in remote African areas. Throughout an intervention in Maniema, Congo, the influence of a DWS performing chlorination in the community's water quality was measured. Additionally, a socio-economic and WASH practices survey was conducted in the communities. Free residual chlorine (FRC) and microbiological contamination were measured; at the borehole, treatment site, distribution points, and households's water containers. In Big Five, water was collected from unimproved sources before DWS construction. Despite that, only 16,6% of households used efficient water treatment methods, resulting in 73% of water stored unsafe for consumption. After construction, household water quality drastically improved, regardless of FRC fluctuations; 93% of samples were classified as low health risk (safe). The renovation guaranteed continuous supply through electro-chlorinators in RVA, where chlorination was intermittent. Water from DWS with adequate chlorine levels prevented microbiological contamination in households for 12 hours. Although economically attractive, the system's sustainability will require future evaluation.
Assuntos
Cloro , Purificação da Água , Qualidade da Água , Abastecimento de Água , Abastecimento de Água/normas , Purificação da Água/métodos , Cloro/análise , República Democrática do Congo , Água Potável/microbiologia , Água Potável/análise , Água Potável/química , Microbiologia da Água , Humanos , HalogenaçãoRESUMO
In Afghanistan, groundwater is widely used for drinking water, but its quality poses a health threat. This study investigates the physical, chemical, and bacteriological characteristics of groundwater in the Upper Kabul Sub-basin. Fifteen samples were collected and analyzed from different parts of the study area. The qualitative determination of parameters such as pH, Electrical conductivity (EC), Total dissolved solids (TDS), Salinity, Total hardness, Calcium, Magnesium, Sodium, Chloride, Fluoride, Sulfate, Phosphate, Potassium, Nitrite, Nitrate, Ammonia, Iron, Manganese, Copper, Aluminum, Arsenic, Total coliform, and Fecal coliform bacteria was carried out. The results were compared with WHO and ANSA standards to assess their suitability for drinking purposes. The analyzed samples indicate that physical parameters generally fall within permissible limits according to WHO and ANSA standards. However, certain wells exhibited elevated levels of chemical and bacteriological contaminants. Specifically, Magnesium concentrations exceeded the WHO guideline of 30 mg/L in all of the samples, and Calcium levels surpassed the recommended limit of 75 mg/L in 53% of the samples. Total coliform bacteria were detected in 33.33% of the samples, while fecal coliform bacteria were within the WHO and ANSA permissible limit for drinking water. The Pearson's correlation coefficient (R) suggested significant correlations between EC, TDS, and total hardness with other physical and chemical parameters. For instance, EC showed a strong positive correlation (R = 1.00) with TDS, EC and Salinity (R = 0.981), EC and Fluoride (R = 0.838) EC and Sulfate (R = 0.853), TDS and Salinity (R = 0. 981), TDS and Fluoride (R = 0.838), TDS and Sulfate (R = 0.853). The findings demonstrate that correlation coefficient analyses of water quality parameters provide a valuable means for monitoring water quality. These results offer critical insights for ensuring a safe water supply in the region.
Assuntos
Monitoramento Ambiental , Água Subterrânea , Água Subterrânea/microbiologia , Água Subterrânea/química , Água Subterrânea/análise , Monitoramento Ambiental/métodos , Afeganistão , Poluentes Químicos da Água/análise , Qualidade da Água , Água Potável/microbiologia , Água Potável/análise , Microbiologia da Água , Enterobacteriaceae/isolamento & purificação , SalinidadeRESUMO
Scientists, resource managers, and decision makers increasingly use knowledge coproduction to guide the stewardship of future landscapes under climate change. This process was applied in the California Central Valley (USA) to solve complex conservation problems, where managed wetlands and croplands are flooded between fall and spring to support some of the largest concentrations of shorebirds and waterfowl in the world. We coproduced scenario narratives, spatially explicit flooded waterbird habitat models, data products, and new knowledge about climate adaptation potential. We documented our coproduction process, and using the coproduced models, we determined when and where management actions make a difference and when climate overrides these actions. The outcomes of this process provide lessons learned on how to cocreate usable information and how to increase climate adaptive capacity in a highly managed landscape. Actions to restore wetlands and prioritize their water supply created habitat outcomes resilient to climate change impacts particularly in March, when habitat was most limited; land protection combined with management can increase the ecosystem's resilience to climate change; and uptake and use of this information was influenced by the roles of different stakeholders, rapidly changing water policies, discrepancies in decision-making time frames, and immediate crises of extreme drought. Although a broad stakeholder group contributed knowledge to scenario narratives and model development, to coproduce usable information, data products were tailored to a small set of decision contexts, leading to fewer stakeholder participants over time. A boundary organization convened stakeholders across a large landscape, and early adopters helped build legitimacy. Yet, broadscale use of climate adaptation knowledge depends on state and local policies, engagement with decision makers that have legislative and budgetary authority, and the capacity to fit data products to specific decision needs.
Coproducción de información sobre el impacto de las decisiones para el hábitat de las aves acuáticas en un clima cambiante Resumen Hay un incremento del uso que dan los científicos, gestores de recursos y los órganos decisorios a la coproducción de información para guiar la administración de los futuros paisajes bajo el cambio climático. Se aplicó este proceso para resolver problemas complejos de conservación en el Valle Central de California (EE. UU.), en donde los humedales y campos de cultivos manejados se inundan entre el otoño y la primavera para mantener una de las mayores concentraciones de aves playeras y acuáticas del mundo. Coproducimos narrativas de escenarios, modelos espacialmente explícitos de hábitats inundados de las aves acuáticas, productos de datos y conocimiento nuevo sobre el potencial de adaptación climática. Documentamos nuestro proceso de coproducción y usamos los modelos resultantes para determinar cuándo y en dónde marcan una diferencia las acciones de manejo y cuándo el clima anula estas acciones. Los resultados de este proceso proporcionan aprendizaje sobre cómo cocrear información útil y cómo incrementar la capacidad adaptativa al clima en un paisaje con mucha gestión. Las acciones de restauración de los humedales y la priorización del suministro de agua originaron un hábitat resiliente al impacto del cambio climático, particularmente en marzo, cuando el hábitat estaba más limitado; la protección del suelo combinado con el manejo puede incrementar la resiliencia del ecosistema al cambio climático; y la captación y uso de esta información estuvo influenciada por el papel de los diferentes actores, el cambio rápido de las políticas del agua, discrepancias en los marcos temporales de la toma de decisiones y las crisis inmediatas de la sequía extrema. Mientras que un grupo amplio de accionistas contribuyó conocimiento para las narrativas de escenarios y el desarrollo del modelo, para coproducir información útil, los productos de datos fueron adaptados para un conjunto pequeño de contextos decisivos, lo que con el tiempo llevó a una reducción en la participación de los actores. Una organización fronteriza convocó a los actores de todo un paisaje y los primeros adoptantes ayudaron a construir la legitimidad. A pesar de esto, el uso a gran escala de la información sobre la adaptación climática depende de las políticas locales y estatales, la participación de los órganos decisorios que tienen autoridad legislativa y presupuestaria y de la capacidad para ajustar los productos de datos a las necesidades específicas de las decisiones.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Áreas Alagadas , Mudança Climática , Estações do AnoRESUMO
The genesis of geogenic iodine (I)-contaminated groundwater poses a significant threat to long-term water exploitation. Safe and sustainable water supply, particularly in the northern arid basins, demands a quantitative prediction of the high variability of I distribution over hydrogeological timescales. Here, bioenergetics-informed reactive transport modeling was combined with high-resolution molecular characterization of fueling organic matter to decipher the time-controlled interactions between vertical flow and (bio)geochemical processes in I transport within the Datong aquifers. The declining reactivities of I-bearing organic matter and Fe oxides in the 15-40 m depth decreased the rate of I release, while a growing number of pore volumes flushed through the aquifers to leach out I- and organic I. This removal effect is compensated by the desorption of I- from Fe oxides and secondary FeS generated from the concurrent reduction of Fe oxides and SO42-. Consequently, peak concentrations of groundwater I- may have appeared, depending upon the vertical recharge rate, at the first several pore volumes flushed through the aquifers. The current vertical distributions of the various I species likely represent a quasi-steady state between I mobilization and leaching. These new mechanistic insights into the dynamic hydrogeological-(bio)geochemical processes support secure groundwater use in the I-affected northern arid basins.
Assuntos
Arsênio , Água Subterrânea , Iodo , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água Subterrânea/química , Abastecimento de Água , ÓxidosRESUMO
Solar desalination has shown great potential in alleviating global water scarcity. However, the trade-off between energy efficiency and salt rejection remains a challenge, restricting its practical applications. In this study, we report a three-dimensional nitrocellulose membrane-based evaporator featuring a high evaporation rate (1.5 kg m-2 h-1) and efficient salt precipitation at the edges. Additionally, the salt is isolated from the photothermal area of the evaporator and falls automatically with a salt recovery rate of 97 g m-2 h-1 in brine with 10 wt % salt content. The distinctive performance is attributed to the precise water supply control, which was adjusted by changing the resistance force and driven force in the evaporator. With a high evaporation rate, stable performance, and specific salt recovery ability, this solar evaporation structure holds great potential in water desalination and resource recovery.
Assuntos
Água Doce , Cloreto de Sódio , Reciclagem , Água , Abastecimento de ÁguaRESUMO
Centralized water supply in rural areas, supported by small waterworks (small-central mode) and by municipal water treatment plants (urban-extension mode), is an important guarantee to implement the Rural Revitalization Strategy Plan (2018-2022) in China. Opportunistic pathogens (OPs) could not be evaluated by the national drinking water sanitation standards in China (GB 5749-2022), posing potential microbial risks in rural drinking water. In this study, the spatiotemporal distribution of OPs, microbial community and the associated functional composition under two central water supply modes were investigated by molecular approaches. The results indicated that OPs were widely presented in the rural drinking water regardless of water supply modes, and were more abundant than those in the urban tap water. The insufficient residual chlorine and higher turbidity triggered more microbial proliferation, posing a seasonal variation of OPs gene copy numbers and bacterial community compositions. In warm seasons of summer and autumn, the gene copies of E. coli, M. avium, Pseudomonas spp. and the amoeba host Acanthamoeba spp. achieved up to 4.92, 3.94, 6.75 and 3.74 log10 (gene copies/mL), respectively. Potential functional prediction indicated higher relative abundance of pathogenic genes and infectious risks associated with the rural drinking water under small-central water supply mode. This one-year survey of the spatiotemporal distribution of OPs and microbial community provided scientific insights into microbial safety of rural drinking water, prompting attention on small-central water supply mode against OPs risks.
Assuntos
Água Potável , Microbiota , Escherichia coli , Abastecimento de Água , Bactérias/genética , Microbiologia da ÁguaRESUMO
INTRODUCTION: Legionella disease can manifest as severe respiratory tract infection with a high mortality rate and is sometimes associated with a hospital outbreak by a contaminated water supply. A patient with breast cancer admitted about a month before. High fever was observed 18 days after admission and the Legionella antigen test showed the positive result. METHODS: Due to the incidence of Legionella infection, we demonstrated the active surveillance of Legionella contamination in the entire hospital. RESULTS: Cultures of her environmental samples revealed that hot water in two bathrooms were contaminated with Legionella. In our hospital, the hot water is heated and pumped up on the roof and distributed to each room. The contaminated bathrooms were related to the same plumbing. Therefore, we further collected samples throughout the hot water system. Legionella was not detected in the central part of the system. However, we detected Legionella in the hot water sampled from other five rooms, which were also associated with the same plumbing of the two bathrooms. The temperature and chlorine concentration of the hot water were not high enough to inactivate Legionella at the end of the plumbing. After the adjustment of the water temperature and chlorine concentration, Legionella became undetectable. Our prompt and active surveillance successfully identified the plumbing of the hot water system as the source of Legionella contamination and took precautions against future outbreaks. CONCLUSIONS: Monitoring of water temperature and chloride concentration at the end of the hot water circulation is important to prevent nosocomial Legionella disease.